
NOTES ON CLIFFORD ALGEBRAS,
SPIN GROUPS AND TRIALITY

ANGELO VISTOLI

1. INTRODUCTION

These are notes on the subject of the title. They could be though of as a greatly
expanded version of the few pages in [FH91] dedicated to this subject, with the
help of the original source [Che54]. They include an exposition of the treatment
of the structure of real Clifford algebras, following, of course, [ABS64], mostly
because of its æsthetic appeal.

I claim no originality whatsoever.

2. CONVENTIONS

All fields will have characteristic different from 2. All vector spaces will be
finite dimensional. If v1, . . . , vm are elements of a vector space V, we denote by
〈v1, . . . , vm〉 the subspace generated by the vi.

All algebras will be associative, with an identity.
The imaginary unit in C will be denoted by

√
−1 or by i.

If V is a K-vector space and q : V → K is a quadratic form, we will also denote
by q : V × V → K the associated symmetric bilinear form, so that q(v) = q(v, v).
This should not give rise to confusion.

For any two vectors v and w in Rn or in Cn, we set 〈v |w〉 = ∑n
i=1 viwi and

|v|2 = 〈v | v〉 = ∑n
i=1 v2

i . The expression |v| is not well-defined for complex vectors,
and will not be employed.

Our notations for matrix groups will be standard; we only remark that by
Spn(C) we mean the group of invertible linear transformations that preserve the
standard alternating form in C2n (this is ofter denoted by Sp2n(C)).

3. EXTERIOR ALGEBRAS

Let V be a vector space over K. Recall that for each integer k ≥ 0 there is
a vector space

∧k V, with an alternating k-linear form Vk → ∧k V, denoted by
(v1, . . . , vk) 7→ v1 ∧ · · · ∧ vk, which is universal among all alternating k-linear
forms. If e1, . . . , en is a basis for V, the elements ei1 ∧ · · · ∧ eik , where i1, . . . , ik
runs over the (n

k) possible increasing sequences of integers between 1 and n, form
a basis for

∧k V.
The direct sum ∧•

V def=
n⊕

k=0

∧k
V
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has natural structure of associative, graded and graded-commutative K-algebra,
with the product denoted by (a, b) 7→ a ∧ b. This product is determined by the
condition

(v1 ∧ · · · ∧ vk) ∧ (w1 ∧ · · · ∧ wl) = v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wl .

Whenever a is a homogeneous element of
∧• V, we denote by |a| its degree; and

if we use the notation |a| for an element of
∧• V, we are always assuming that a is

homogeneous.
There is a natural embedding V =

∧1 V ↪→ ∧• V. We have v ∧ v = 0 and
v ∧ w + w ∧ v = 0 for any v and w in V.

This embedding has the following universal property.

Proposition 3.1. Let A be a K-algebra, φ : V → A a K-linear function such that φ(v)2 =
0 for any v ∈ V. Then φ extends uniquely to a homomorphism of K-algebras

∧• V → A.

Proof. We have

0 =
(
φ(v) + φ(w)

)2

= φ(v)2 + φ(v)φ(w) + φ(w)φ(v) + φ(w)2

= φ(v)φ(w) + φ(w)φ(v)

for any v and w in V. This allows to prove easily that the k-linear form Vk → A
defined by

(v1, . . . , vk) 7−→ φ(v1) . . . φ(vk)

is alternating, and so it defined a K-linear map
∧k V → A for any k ≥ 0. By sum-

ming up we get the required algebra homomorphism
∧• V → A; it is obviously

unique, because the elements of V generate
∧• V as a K-algebra. ♠

The exterior algebra has an automorphism and two anti-automorphisms that
will be needed. The main involution ε :

∧• V → ∧• V is the K-linear map that is
characterized by the following properties
(a) ε(1) = 1,
(b) ε(v) = −v for any v ∈ V, and
(c) ε(a ∧ b) = ε(a) ∧ ε(b) for all a and b in

∧• V.
It is an automorphism of algebras. It is defined by the obvious formula

ε(v1 ∧ · · · ∧ vk) = (−1)kv1 ∧ · · · ∧ vk;

hence we have the alternate definition ε(a) = (−1)|a|.
We will also use the main anti-automorphism, or the transposition, a 7→ at of

∧• V.
This is the only K-linear map of degree 0 satisfying the conditions
(a) 1t = 1,
(b) vt = v for any v ∈ V, and
(c) (a ∧ b)t = bt ∧ at.
It is defined by the obvious formula

(v1 ∧ · · · ∧ vk)t = vk ∧ · · · ∧ v1

= (−1)
k(k−1)

2 v1 ∧ · · · ∧ vk.
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From this formula we have the alternate definition

at = (−1)
|a|(|a|−1)

2 a.

This is an involution: that is, (at)t = a.
The conjugation a 7→ a is the anti-automorphism of

∧• V defined by the formula

a = ε(a)t = ε(at).

It is characterized by the conditions
(a) 1 = 1,
(b) v = −v for any v ∈ V, and
(c) a ∧ b = b ∧ a.
It is also defined by the formula

at = (−1)
|a|(|a|+1)

2 a.

Let V∨ be the dual space of V; we will denote by

〈− | −〉 : V∨ ×V −→ K

the canonical non-degenerate pairing defined by 〈ξ | v〉 = ξ(v). This pairing in-
duces a pairing

〈− | −〉 :
∧k

(V∨)×
∧k

V −→ K
defined by the customary formula

〈ξ1 ∧ · · · ∧ ξk | v1 ∧ · · · ∧ vk〉 = det(〈ξi | vj〉).

If e1, . . . , en is a basis for V, ε1, . . . , εn the dual basis in V∨, then one easily
checks that the bases {ei1 ∧ · · · ∧ eik} and {εj1 ∧ · · · ∧ εjk} are dual with respect
to this pairing: hence the pairing is non-degenerate, and we get an isomorphism∧k(V∨) '

(∧k V
)∨.

By summing over all k we also obtain a non-degenerate bilinear pairing

〈− | −〉 :
∧•

V∨ ×
∧•

V −→ K

in which
∧l V∨ and

∧k V are orthogonal when k 6= l.

Proposition 3.2. If ξ ∈ V∨, we have a unique K-linear homomorphism
∧• V → ∧• V

of degree −1, called the left contraction by ξ, denoted by a 7→ ξ ` a, with the following
properties.
(a) If v ∈ V, then ξ ` v = 〈ξ | v〉.
(b) ξ ` is a left derivation: that is, if a and b are in

∧• V, we have

ξ ` (a ∧ b) = (ξ ` a) ∧ b + (−1)|a|a ∧ (ξ ` b).

Furthermore, this homomorphism has the following properties.
(i) If v1, . . . , vk are in V, then

ξ ` (v1 ∧ · · · ∧ vk) =
k

∑
i=1

(−1)i−1〈ξ | vi〉v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk,

where ̂ denotes an omitted term.
(ii) ξ ` a is linear in ξ.

(iii) ξ ` :
∧• V → ∧• V is the adjoint to K-linear homomorphism Lξ :

∧• V → ∧• V
defined by Lξ(α) = ξ ∧ α, through the pairing above.
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(iv) ξ ` (ξ ` a) = 0.
(v) If ξ and η are in V∨, then ξ ` (η ` z) = −η ` (ξ ` a).

Proof. By induction on k, it is easy to see that if ξ ` has the required properties (a)
and (b), then (i) holds.

On the other hand, the sum on the right hand side of the equation in (i) is easily
seen to be 0 whenever two of the vi coincide. Hence there is a unique linear map
ξ ` :

∧k V → ∧k−1 V satisfying the equality. One can immediately check that the
equality

ξ ` (a ∧ b) = (ξ ` a) ∧ b + (−1)|a|a ∧ (ξ ` b)
holds, by first looking at the case when a and b are decomposable.

Part (ii) is clear.
For part (iii), we need to prove the equality 〈α | ξ ` a〉 = 〈ξ ∧ α | a〉 for any

a ∈ ∧k V and α ∈ ∧k−1 V∨. Since both sides of the equality are bilinear in a
and α, we may assume that a and α are decomposable. Write a = v1 ∧ · · · ∧ vk,
α = ξ2 ∧ · · · ∧ ξk, and ξ = ξ1. Then we have 〈ξ ∧ α | a〉 = det (〈ξi | vi〉), while

〈α | ξ ` a〉 =
k

∑
i=1

(−1)i−1〈ξ1 | vi〉〈ξ2 ∧ · · · ∧ ξk | v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk〉;

and the determinants that appear in the definition of the terms 〈ξ2 ∧ · · · ∧ ξk | v1 ∧
· · · ∧ v̂i ∧ · · · ∧ vk〉 are the determinants of the matrices obtained from the matrix
(〈ξi | vj〉) by deleting the first row and the ith column. Hence the result follows
from the usual rule for computing a determinant by expanding along a row.

The remaining assertions follow immediately from part (iii), and the facts that

Lξ ◦ Lξ(a) = ξ ∧ ξ ∧ a = 0

and

Lξ ◦ Lη(a) = ξ ∧ η ∧ a
= −η ∧ ξ ∧ a

= −Lη ◦ Lξ(a). ♠

From this we can also define the right contraction
∧• V → ∧• V, denoted by

a 7→ a a ξ, via the formula
a a ξ = (ξ ` at)t.

Here are its main properties.

Proposition 3.3.
(a) If v ∈ V, then v a ξ = 〈ξ | v〉.
(b) ξ ` is a right derivation: that is, if a and b are in

∧• V, we have

(a ∧ b) a ξ = a ∧ (b a ξ) + (−1)|b|(a a ξ) ∧ b.

(c) ξ ` a is linear in ξ.
(d) (ξ ` a)t = at a ξ.
(e) ξ ` a = −a a ξ.
(f) a a ξ = (−1)|a|+1ξ ` a.
(g) The function a 7→ a a ξ is the adjoint to K-linear homomorphism Rξ :

∧• V → ∧• V
defined by Rξ(α) = α ∧ ξ, through the pairing above.

(h) (a a ξ) a ξ = 0.
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(i) If ξ and η are in V∨, then (a a ξ) a η = −(a a η) a ξ.
(j) If ξ and η are in V∨, then ξ ` (a a η) = (ξ ` a) a η.

Proof. These are very easy.
Part (d) follows immediately from the definition, and the fact that the transpo-

sition is an involution.
Parts (f) and (e) can be verified in several ways: for example, one can assume

that a is decomposable, and then proceede by induction on |a|.
I will only sketch the proof of part (g), from which the following ones can be

easily deduced. First of all, for all α ∈ ∧• V∨ and a ∈ ∧• V, we have 〈αt | at〉 =
〈α | a〉. To prove this we may assume that α and a are decomposable, in which case
it follows from the fact that the transpose of a matrix has the same determinant as
the matrix itself. So we have

〈α ∧ ξ | a〉 = 〈(α ∧ ξ)t | at〉
= 〈ξ ∧ αt | at〉
= 〈αt | ξ ` at〉
= 〈αt | (a a ξ)t〉
= 〈α | a a ξ〉,

as claimed. ♠

For later use, we record the following fact.

Lemma 3.4. Let a ∈ ∧• V. If ξ ` a = 0 for all ξ ∈ V∨, then a is a scalar.

Proof. Let e1, . . . , en be a basis for V; for each I ⊆ {1, . . . , n} set eI = ei1 ∧ eik , where
we have written I = {i1, . . . , ik} with i1 < · · · < ik. Let ε1, . . . , εn be the dual basis
of V∨. Then for each i = 1, . . . , n we have

ei ` eI =

{
0 if i /∈ I
±eI\{i} if i ∈ I.

The elements eI for a basis for
∧• V; suppose that ξ ` a = 0 for all ξ ∈ V∨, and

write a = ∑I αIeI . Then
0 = εi ` a = ∑

i∈I
±αIeI\{i}

so αI = 0 whenever i ∈ I. Since this holds for every i, we have αI = 0 whenever I
is not empty, and a is a multiple of e∅ = 1, that is, a scalar. ♠

If q : V → K a quadratic form, for each v ∈ V and a ∈ ∧• V we denote by v ` a
and a a v the left and right contractions of a by the linear form q(v,−). Let us
record the properties of these operations that we are going to use in the future.

Proposition 3.5.
(a) If x ∈ V, then v ` x = x a v = q(v, x).
(b) v ` is a left derivation, a v a right derivation.
(c) v ` a and a a v are linear in v.
(d) (v ` a)t = at a v.
(e) v ` a = a a v = −a a v.
(f) a a v = (−1)|a|+1v ` a.
(g) v ` (v ` a) = (a a v) a v = 0.
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(h) If v and w are in V, then v ` (w ` a) = −w ` (v ` a) and (a a v) a w = −(a a
w) a v.

(i) If v and w are in V, then v ` (a a w) = (v ` a) a w.

4. CLIFFORD ALGEBRAS

We will work in the category of quadratic forms: the objects are pairs (V, q),
where V is a vector space over K and q : V → K is a quadratic form. The ar-
rows (V, q) → (V′, q′) are isometric maps, that is, K-linear maps f : V → V′ with
q′
(

f (v)
)

= q(v) for any v ∈ V. By the polarization formula, this condition is
equivalent to the seemingly stronger requirement that q′

(
f (v), f (w)

)
= q(v, w)

for all v and w in V.
Let V be a vector space over K, q : V → K a quadratic form.

Definition 4.1. A Clifford algebra C(V, q) is a K-algebra over K, with a K-linear
homomorphism J : V → C(V, q), such that

(a) J(v)2 = q(v) for all v ∈ V, and
(b) J : V → C(V, q) is universal with respect to K-linear maps with the property

above, that is, if A is a K-algebra and φ : V → A is a K-linear map such that
φ(v)2 = 0 for all v ∈ V, then there exists a unique homomorphism of K-
algebras φ : C(V, q)→ A such that φ = φ ◦ J : V → A.

Proposition 4.2. There exists a Clifford algebra C(V, q) for any quadratic form q : V →
K.

Proof. In the tensor algebra T(V) =
⊕∞

k=0 V⊗k consider the two-sided ideal I gen-
erated by the elements of the form v⊗ v− q(v). From the universal property of the
tensor algebra itself, it is straightforward to see that the quotient algebra T(V)/I,
with the obvious map J : V = V⊗1 → T(V)/I, has the required universal prop-
erty. ♠

From the standard categorical arguments one deduces that C(V, q) is unique
up to a unique isomorphism of K-algebras, and that by choosing a C(V, q) for
every vector space with a quadratic form one gets a functor from the category of
quadratic forms to the category of K-algebras. This allows to talk about the Clifford
algebra C(V, q).

Proposition 4.3. The Clifford algebra C(V, q) has a unique Z/2Z-grading in which
every element of the form J(v), where v ∈ V, is odd. This grading is functorial, that
is, if f : (V, q) → (V′, q′) is an isometric map, the induced homomorphism of algebras
C(V, q)→ C(V′, q′) preserve the grading.

Proof. In the construction of Proposition 4.2, the ideal I is homogeneous with re-
spect to the Z/2Z-grading. This proves existence.

Uniqueness and functoriality are obvious from the fact that C(V, q) is generated
by the J(v). ♠

We will denote by C+(V, q) the even part of C(V, q), C−(V, q) its odd part.
From the fact above, we obtain a functor from the category of quadratic forms into
the category of Z/2Z-graded algebras sending (V, q) into C(V, q).
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Example 4.4. If q = 0, then C(V, q) =
∧• V, with the map J : V → ∧• V being the

embedding V =
∧1 V ↪→ ∧• V. The Z/2Z-grading has

∧+ V =
⊕

k
∧2k V as its

even part, and
∧− V =

⊕
k
∧2k+1 V as its odd part.

This is immediate from Proposition 3.1.
We will see later that the function J is always injective: for this reason, we iden-

tify V with its image into C(V, q), and from now on write v for J(v), thus making
the notation much lighter. Some readers (probably not very many) might not like
the fact that we have removed the J from the notation before knowing for sure
that we may do so, and wonder if this might lead to logical error and circular rea-
soning. These readers are invited to reintroduce all the missing J, and convince
themselves that it is not so.

Notice the following fact. If (V, q) is a quadratic form, φ : V → A a K-linear
map into a K-algebra such that φ(v)2 = q(v) for all v ∈ V, we have

φ(v)φ(w) + φ(w)φ(v) = φ(v + w)2 − φ(v)2 − φ(w)2

= q(v + w)− q(v)− q(w)

= 2q(v, w)

for any v and w in V. Conversely, if the equation φ(v)φ(w) + φ(w)φ(v) = 2q(v, w)
is always satisfied, by substituing v = w we get φ(v)2 = q(v) for all v. Hence,
a Clifford algebra can also be defined as the universal algebra with respect to the
condition that vw + wv = 2q(v, w) for any v and w in V. In particular, we ob-
tain the following important fact: in the Clifford algebra, two orthogonal vectors
anticommute.

Let e1, . . . , en be an orthogonal basis for V, and set αi = q(ei) for i = 1, . . . , n.
If φ : V → A is K-linear map into a K-algebra, then the expressions φ(v)φ(w) +
φ(w)φ(v) and q(v, w) are both symmetric and bilinear: hence they are equal if and
only if they are equal whenever v and w are elements of the basis above. This
proves the following.

Proposition 4.5. The Clifford algebra C(V, q) is the algebra generated by e1, . . . , en, with
the relations e2

i = αi for all i, and eiej + ejei = 0 for all i 6= j.

Let I be a subset of {1, . . . , n}; write it as I = {i1, . . . , ik}, write eI for the element
ei1 . . . eik of C(V, q). From the relations above, it is easy to see that C(V, q) is gen-
erated as a vector space by the elements eI ; hence its dimension as a vector space
is at most 2n (we will see that the eI are linearly independent, and the dimension
is precisely 2n).

From this we deduce the following.

Proposition 4.6. Let A be a K-algebra of dimension 2n as a vector space, with elements
u1, . . . , un such that u2

i = αi for all i, and uiuj + ujui = 0 for all i 6= j. Then the
homomorphism of K-algebras C(V, q)→ A that sends each ei into ui is an isomorphism.

This allows us to construct our first interesting examples.

Examples 4.7. Here K = R. We set Cn = C(Rn,− |x|2) and C̃n = C(Rn, |x|2). Let
us investigate the structure of Cn and C̃n.

(a) Clearly, C0 = C̃0 = R.
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(b) C1 is generated by one element e1, with the single relation e2
1 = −1. Hence C1

is commutative, so C1 = R[x]/(x2 + 1) = C. The even part is R, while the
odd part is the imaginary axis iR.

(c) Analogously, we have C̃1 = R[x]/(x2 − 1) = R × R. The even part is the
diagonal {(x, x)}, while the odd part is the antidiagonal {(x,−x)}.

(d) C2 is more interesting. It is generated by two generators e1 and e2, with re-
lations e2

1 = e2
2 = −1 and e1e2 + e2e1 = 0. The quaternion algebra H has

dimension 4, and is generated by two elements i and j, with i2 = j2 = −1, and
ij = k = −ji; hence there is an isomorphism C2 'H that sends e1 into i and e2
into j. The even part is R + Rk ' C, while the odd part is Ri + Rj.

(e) For C̃2 we are looking for a 4-dimensional algebra generated by elements e1
and e2, subject to the relations e2

1 = e2
2 = 1 and e1e2 + e2e1 = 0. This is the

matrix algebra M2(R), taking

e1 =
(

0 1
1 0

)
and e2 =

(
1 0
0 −1

)
.

The even part C+
2 is R + Re1e2, consisting of matrices of the form(

a −b
b a

)
.

Since (e1e2)2 = −e2
1e2

2 = −1, this is isomorphic to C. Indeed, this is the stan-
dard realization of C as a subalgebra of M2(C), by considering the action of C
by multiplication on C = R2.

(f) To identify C3, we need an algebra of dimension 8 with three generators e1,
e2 and e3 that anticommmute, with e2

1 = e2
2 = e2

3 = −1. The three imaginary
units i, j and k in H satisfy these relations, but the algebra is too small.

We can take the product H×H as an algebra, with elements e1 = (i,−i),
e2 = (j,−j) and e3 = (k,−k). We have ε1

def= e2e3 = (i, i), ε2
def= e3e1 = (j, j)

and ε3
def= e1e2 = (k, k). Clearly, 1, e1, e2, e3, ε1, ε2, ε3, and e1e2e3 = (1,−1)

form a basis of H×H. Hence C3 is H×H; the even part C+
3 is the subspace

generated by 1, ε1, ε2 and ε3: this is the diagonal {(x, x)}, which is isomorphic
to H. The odd part is the antidiagonal {(x,−x)}.

(g) C̃3 is the algebra M2(C). We take

e1 =
(

0 1
1 0

)
, e2 =

(
1 0
0 −1

)
and e3 =

(
0 i
−i 0

)
.

These elements are easily seen to generate M2(C); furthermore e2
i = 1 and

eiej + ejei = 0 for all i 6= j.
The even part C̃+

3 is R⊕Re1e2 ⊕Re2e3 ⊕ e1e3. Since (e1e2)2 = −e2
1e2

2 = −1,
(e2e3)2 = −e2

2e2
3 = −1, and e1e2e2e3 = e1e3, we have that C̃+

3 is isomorphic to
H.

Change of base field. The construction of the Clifford algebra is compatible with
base change. Let (V, q) be a quadratic form on K, K ⊆ K′ a field extension. Then q
extends naturally to a quadratic form qK′ on VK′

def= X⊗K K′, in such a way that

qK′(v⊗ α, w⊗ β) = q(v, w)αβ

for all v, w ∈ V and α, β ∈ K′.
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This quadratic form has the following universal property. Given a quadratic
form (V′, q′) over K′, we say that a K-linear map f : V → V′ is isometric when
q′
(

f (v), f (w)
)

= q(v, w) ∈ K for any v, w ∈ V. Any isometric map f : V → V′

extends uniquely to a K′-linear map f ′ : VK′ → V′, by the formula f ′(v ⊗ α) =
f (v)α; and this map is immediately checked to be a isometric. Hence there is a
bijective correspondence between isometric maps V → V′ and isometric maps
VK′ → V′.

Next, recall that given a K-algebra A, the tensor product A⊗K K′ has a natural
structure of K′-algebra, with the product being given by the rule (a⊗ α)(b⊗ β) =
ab ⊗ αβ. This structure has the property that, given a K′-algebra A′ and a ho-
momorphism of K-algebras A → A′ (here A′ is considered to be a K-algebra
via restriction of scalars), this extends to a unique homomorphism of K′-algebra
A⊗K K′ → A′.

Proposition 4.8. There is a canonical isomorphism of K′-algebras between C(VK′ , qK′)
and C(V, q)⊗K K′.

Proof. Consider the natural K′-linear map

J′ def= J ⊗ idK′ : VK −→ C(V, q)⊗K K′.

First of all, J′(v′)2 = qK′(v′) for any v′ ∈ VK′ . This is equivalent to J′(v′)J′(w′) +
J′(w′)J′(v′) = 2q(v′, w′) for all v′ and w′ in VK′ ; and to check this we may assume
that v′ and w′ are of the form v⊗ 1 and w⊗ 1 for v and w in V, since vectors of this
form generate VK′ ; and then the formula is obvious.

Then we need to check that the homomorphism has the universal property that
any φ′ : VK′ → A′ with φ′(v′)2 = qK′(v′) for all v′ ∈ V′ factors uniquely through
C(v, q) ⊗K K′. The restriction φ : V → A′ defined by φ(v) = φ′(v ⊗ 1) has the
property that φ(v)2 = qK′(v ⊗ 1) = a(v) for all v ∈ V, so we get that φ factors
throuh a homomorphism of K-algebras C(V, q) → A′. This extends to a unique
homomorphism of K′-algebras C(V, q)⊗ K′ → A′; this gives the required factor-
ization. ♠

This gives a natural embedding C(V, q) ↪→ C(VK′ , qK′).

5. CLIFFORD ALGEBRAS AND EXTERIOR ALGEBRAS

We will denote by (V, q) a quadratic form, e1, . . . , en an orthogonal basis of V.
We will write

∧+ V and
∧− V for the even and the odd part of

∧• V; these are
respectively

⊕
k
∧2k V and

⊕
k
∧2k+1 V.

Theorem 5.1. There is a structure of R-algebra on
∧• V such that for any v ∈ V and

a ∈ ∧• V we have

(5.1) va = v ∧ a + v ` a

and

(5.2) av = a ∧ v + a a v.

The embedding V =
∧1 V ↪→ ∧• V makes

∧• V into a Clifford algebra for (V, q).
This structure is functorial, in the sense that if f : V → V′ is an isometric map from

(V, q) to (V′, q′), then
∧• f :

∧• V → ∧• V′ is a homomorphism of algebras.
The even part and odd part of

∧• V as Clifford algebra are
∧+ V and

∧− V respectively.
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For any a and b in
∧• V we have

ε(ab) = ε(a)ε(b), (ab)t = btat and ab = b a.

Definition 5.2. The new operation defined in
∧• V is called the Clifford product.

Remark 5.3. If q = 0, then the Clifford product concides with the wedge product.

Remark 5.4. Either of the two formulas 5.1 and 5.2 above imply that

vw = v ∧ w + q(v, w)

for any v and w in V.

Corollary 5.5. The linear map J : V → C(V, q) is injective, and the dimension of the
Clifford algebra C(V, q) is 2dim V . Hence the elements ei1 . . . eik , where (i1, . . . , ik) ranges
over all strictly increasing sequences of integer between 1 and n, form a basis for C(V, q).

Proof of Theorem 5.1. For clarity, we will reintroduce J : V → C(V, q) in the nota-
tion.

We will show that there is an isomorphism of K-vector spaces Φ : C(V, q) →∧• V with the properties that Φ(1) = 1, and

Φ
(

J(v)a
)

= v ∧Φ(a) + v ` Φ(a)

for any v ∈ V and a ∈ C(V, q). Notice that these two conditions imply that

Φ
(

J(v)
)

= Φ
(

J(v)1
)

= v ∧Φ(1) + v ` Φ(1)
= v ∧ 1 + v ` 1
= v

for any v ∈ V. Once we have done this, we can define the product in such a way
that Φ becomes an isomorphism of K-algebras, as

xy = Φ
(
Φ−1(x)Φ−1(y)

)
.

Then we have

vx = Φ
(
Φ−1(v)Φ−1(y)

)
= Φ

(
J(v)Φ−1(y)

)
= v ∧ x + v ` x

for any v ∈ V; that is, equation 5.1 is satisfied. It is also clear that
∧• V becomes a

Clifford algebra, since Φ is an isomorphism.
To construct Φ, consider the map ψ : V → EndK(

∧• V) defined by the formula

ψ(v)x = v ∧ x + v ` x.

The map ψ is evidently linear. Also, we have

ψ(v)2x = v ∧ (v ∧ x + v ` x) + v ` (v ∧ x + v ` x)

= v ∧ v ∧ x + v ∧ (v ` x) + v ` (v ∧ x) + v ` (v ` x)

= v ∧ (v ` x) + (v ` v) ∧ x− v ∧ (v ` x)

= q(v)x;
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hence ψ(v)2 = q(v), and so there exists a unique homomorphism of K-algebras
Ψ : C(V, q) → EndK(

∧• V) such that Ψ
(

J(v)
)

= ψ(v) for all v ∈ V. We define
Φ : C(V, q)→ ∧• V by the formula

Φ(a) = Ψ(a)1.

Then we have

Φ
(

J(v)a
)

= Ψ
(

J(v)a
)
1

= Ψ
(

J(v)
)
Ψ
(
a
)
1

= ψ(v)Φ(a)

= v ∧Φ(a) + v ` Φ(a)

as required.
We need to show that Φ is an isomorphism: since dimK C(V, q) ≤ 2n while

dimK
∧• V = 2n, it is enough to show that Φ is surjective. Take one of the basis

elements ei1 ∧ · · · ∧ eik of
∧• V: it is clearly sufficient to prove that

Φ
(

J(ei1) . . . J(eik )
)

= ei1 ∧ · · · ∧ eik :

this is easy, by induction on k, because ei1 ` (ei2 ∧ · · · ∧ eik ) = 0.
Let us prove formula 5.2. Since C(V, q) =

∧• V is generated by elements of
V, we may assume that a is of the form v1 . . . vk, for certain v1, . . . , vk in V. We
will proceed by induction on k; when k = 0 then a = 1 and the formula is trivial.
Assume that the formula holds when a is a product of k − 1 elements. Then we
have

av = (v1 . . . vk)v

= v1(v2 . . . vkv)

= v1 ∧
(
(v2 . . . vk) ∧ v + (v2 . . . vk) a v

)
+ v1 `

(
(v2 . . . vk) ∧ v + (v2 . . . vk) a v

)
= v1 ∧ (v2 . . . vk) ∧ v + v1 ∧

(
(v2 . . . vk) a v

)
+
(
v1 ` (v2 . . . vk)

)
∧ v + (−1)k−1(v2 . . . vk)q(v1, v)

+ v1 `
(
(v2 . . . vk) a v

)
= v1 ∧ (v2 . . . vk) ∧ v +

(
v1 ∧ (v2 . . . vk)

)
a v

+
(
v1 ` (v2 . . . vk)

)
∧ v +

(
v1 ` (v2 . . . vk)

)
a v

=
(
v1 ∧ (v2 . . . vk) + v1 ∧ (v2 . . . vk)

)
∧ v

+
(
v1 ∧ (v2 . . . vk) + v1 ∧ (v2 . . . vk)

)
a v

= (v1 . . . vk) ∧ v + (v1 . . . vk) a v
= a ∧ v + a a v

as claimed.
Functoriality is clear from the construction.
Let us check that

∧+ V and
∧− V are the even and odd part of

∧• V as a Clifford
algebra. The even part is generated as a vector space by the product of an even
number of elements of V, and similarly for the odd part: hence it is enough to
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show that if v1, . . . , vk are in V, then v1 . . . vk is in
∧+ V if k is even, or in

∧− V if k
is odd. This is easily done by induction on k from formula 5.1.

The formula ε(ab) = ε(a)ε(b) follows from this last fact.
To prove the formula (ab)t = btat, first assume that a = v is an element of V.

Then

(vb)t = (v ∧ b + v ` b)t

= bt ∧ vt + bt a v

= btvt,

as claimed. For the general case, we may assume that a is of the form v1 . . . vk; and
then the proof is by induction on k, in the obvious fashion.

The formula ab = b a follows from the previous two. ♠

Lemma 5.6. Let v1, . . . , vk be elements of V that are pairwise orthogonal. Then

v1 . . . vk = v1 ∧ · · · ∧ vk

in
∧• V.

Proof. Easy, by induction on k from either of the formulas of Theorem 5.1. ♠

From now on we will work with this model of the Clifford algebra, and write
C(V, q) for

∧• V with this product.
There is an increasing filtration F•C(V, q), where FkC(V, q) is defined as the

vector subspace of C(V, q) generated by the products v1 . . . vk, where v1, . . . , vk ∈
V. Thus FkC(V, q) = 0 for k < 0, and FkC(V, q) = C(V, q) for k ≥ n. Furthermore
if a ∈ FkC(V, q) and b ∈ FlC(V, q), then ab ∈ Fk+lC(V, q); thus the associated
graded vector space

∞⊕
k=0

FkC(V, q)/Fk−1C(V, q)

has a natural structure as a graded algebra.

Proposition 5.7.

(a) FkC(V, q) =
⊕
i≤k

∧i
V.

(b) If a and b are in FkC(V, q) and FlC(V, q) respectively, then

ab− a ∧ b ∈ Fk+l−2C(V, q).

(c) The graded algebra associated with this filtration is canonically isomorphic to
∧• V.

Proof. Fix an orthogonal basis e1, . . . , en of V: by the multi-linearity in v1, . . . , vk
of the product v1 . . . vk, it is easy to see that FkC(V, q) is the subspace generated
by the products ei1 . . . eik of at most k of the ei. By using the relations e2

i = q(ei)
and eiej + ejei = 0, we see that in fact when two of the indices coincide then the
product ei1 . . . eik is in Fk−2C(V, q); while when this does not happen then

ei1 . . . eik = ei1 ∧ · · · ∧ eik

by Lemma 5.6. This allows to prove part (a) easily by induction on k.
Part (b) can also be proved easily by using the basis e1, . . . , en. We will use

the following alternate method: we may assume that a is of the form v1 . . . vk.
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We proceed by induction on k, the statement being obvious when k = 0. Set
u = v2 . . . vk; by induction hypothesis we have ub− u ∧ b ∈ Fk+l−3C(V, q). Then

ab− a ∧ b = v1ub− (v1u) ∧ b

= v1(ub− u ∧ b) + v1(u ∧ b)− v1 ∧ u ∧ b− (v1 ` u) ∧ b

= v1(ub− u ∧ b) + v1 ` (u ∧ b)− (v1 ` u) ∧ b;

and all the terms appearing in the last sum are in Fk+l−2C(V, q).
Part (c) follows from (a) and (b). ♠

Proposition 5.8. If K has characteristic 0, then for sequence any v1, . . . , vk of elements
of V we have

v1 ∧ · · · ∧ vk =
1
k! ∑

σ∈Sk

sgn(σ)vσ(1) . . . vσ(k).

Proof. Both sides of the equations are k-linear and alternating; hence it is enough
to prove the equality when the vi are among the ej. If two of the vi are equal then
both sides are 0; otherwise the vi are pairwise orthogonal, and the result follows
from Lemma 5.6. ♠

Assume that q is non-degenerate. Recall that the Lie algebra so(q) ⊆ EndK(V)
of SO(q) consists of linear maps A : V → V which are skew-symmetric, that is, are
such that

q(Av, w) + q(v, Aw) = 0
for any v and w in V; or equivalently such that q(Av, v) = 0 for all v ∈ V. If
e1, . . . , en is an orthogonal basis for V, and αi = q(ei), then this equivalent to the
condition that the matrix (aij) of A satisfies aii = 0 for all i, and αiaij + αjaji = 0
for all i 6= j; hence so(q) is a vector space of dimension n(n− 1)/2.

Theorem 5.9. Assume that q is non-degenerate. Then
∧2 V ⊆ ∧• V = C(V, q) is a Lie

subalgebra of C(V, q), and is canonically isomorphic to so(q).

Proof. Let us show that
∧2 V is a Lie subalgebra: it is enough to show that the

bracket of two decomposable vectors in
∧2 V is still in

∧2 V.
Let v1, v2, w1 and w2 be in V. Then we have

(v1 ∧ v2)(w1 ∧ w2) =
(
v1v2 − q(v1, v2)

)
(w1 ∧ w2)

= v1
(
v2(w1 ∧ w2)

)
− q(v1, v2)(w1 ∧ w2)

= v1
(
v2 ∧ w1 ∧ w2 + v2 ` (w1 ∧ w2)

)
− q(v1, v2)(w1 ∧ w2)

= v1
(
v2 ∧ w1 ∧ w2 + q(v2, w1)w2 − q(v2,w2)w1

)
− q(v1, v2)(w1 ∧ w2)

= v1 ∧ v2 ∧ w1 ∧ w2 + q(v2, w1)(v1 ∧ w2)− q(v2,w2)(v1 ∧ w1)

+ v1 ` (v2 ∧ w1 ∧ w2) + q(v2, w1)q(v1, w2)− q(v2,w2)q(v1, w1)

− q(v1, v2)(w1 ∧ w2)

= v1 ∧ v2 ∧ w1 ∧ w2 + q(v2, w1)(v1 ∧ w2)− q(v2,w2)(v1 ∧ w1)

+ q(v1, v2)(w1 ∧ w2)− q(v1, w1)(v2 ∧ w2) + q(v1, w2)(v2 ∧ w1)

+ q(v2, w1)q(v1, w2)− q(v2,w2)q(v1, w1)

− q(v1, v2)(w1 ∧ w2)



14 ANGELO VISTOLI

= v1 ∧ v2 ∧ w1 ∧ w2 + q(v2, w1)q(v1, w2)− q(v2,w2)q(v1, w1)

− q(v2,w2)(v1 ∧ w1) + q(v2, w1)(v1 ∧ w2)

+ q(v1, w2)(v2 ∧ w1)− q(v1, w1)(v2 ∧ w2).

The first two terms of the last expression are left invariant by exchanging v1 ∧ v2
and w1 ∧ w2, while the other four terms change sign: so we get a formula for the
bracket:

[v1 ∧ v2, w1 ∧ w2] = 2
(
−q(v2,w2)(v1 ∧ w1) + q(v2, w1)(v1 ∧ w2)

+ q(v1, w2)(v2 ∧ w1)− q(v1, w1)(v2 ∧ w2)
)

∈
∧2

V.

So we see that
∧2 V is a Lie subalgebra of C(V, q), and have a formula for the

bracket.
Next we need to give an isomorphism φ :

∧2 V → so(q) of Lie algebras between∧2 V and so(q). As a linear map, it is defined by the formula

φ(v1, v2)x = 2
(
q(v2, x)v1 − q(v1, x)v2

)
;

it is easy to check that this function is skew-symmetric with respect to q, by show-
ing that q

(
x, φ(v1, v2)x

)
is identically 0; it is also obviously alternating in v1 and

V2, so gives a well defined map φ :
∧2 V → so(q), as claimed.

If ei is an orthogonal basis as before, one immediately checks that the φ(ei, ej)
with i < j are linearly independent; hence φ is injective, and, since

∧2 V and so(q)
have the same dimension, φ is an isomorphism.

Let us compute the bracket: we have

[φ(v1 ∧ v2), φ(w1 ∧ w2)]x = 2φ(v1 ∧ v2)
(
q(w2, x)w1 − q(w1, x)w2

)
− 2φ(w2 ∧ w1)

(
q(v2, x)v1 − q(v1, x)v2

)
= 4

(
q(v2, w1)q(w2, x)v1 − q(v1, w1)q(w2, x)v2

− q(v2, w2)q(w1, x)v1 + q(v1, w2)q(w1, x)v2

− q(w2, v1)q(v2, x)w1 + q(w1, v1)q(v2, x)w2

+ q(w2, v2)q(v1, x)w1 − q(w1, v2)q(v1, x)w2
)

= 4
(
−q(v2, w2)

(
q(w1, x)v1 − q(v1, x)w1

)
+ q(v2, w1)

(
q(w2, x)v1 − q(v2, x)w2

)
+ q(v1, w2)

(
q(w1, x)v2 − q(v2, x)w1

)
− q(v1, w1)

(
q(w2, x)v2 − q(v2, x)w2

))
= 2

(
−q(v2, w2)φ(v1 ∧ w1) + q(v2, w1)φ(v1 ∧ w2)

+ q(v1, w2)φ(v2, w1)− q(v1, w1)φ(v2, w2)
)
x

φ
(
[v1 ∧ v2, w1 ∧ w2]

)
x,

as we were claiming. ♠
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6. REAL CLIFFORD ALGEBRAS

Recall that if A and B are algebras over K the tensor product A ⊗K B has a
natural algebra structure, such that (a⊗ b)(a′ ⊗ b) = aa′ ⊗ bb′ for all a and a′ in A,
b and b′ in B. The natural isomorphism of vector spaces A⊗ B ' B⊗ A is also an
isomorphism of algebras.

As in Examples 4.7, we set Cn = C(Rn,− |x|2) and C̃n = C(Rn, |x|2). We
have seen the following equalities: C0 = C̃1 = R, C1 = C, C̃1 = R×R, C2 = H,
C̃2 = M2(R) (we have seen more, but this is what we will need). Let us reconstruct
the structure of all Clifford algebras, using the classical method of Atiyah, Bott and
Shapiro [ABS64].

Theorem 6.1 (Atiyah, Bott and Shapiro). For each n ≥ 0 we have isomorphisms of
algebras

Cn ⊗R C̃2 ' C̃n+2 and C̃n ⊗R C2 ' Cn+2

Proof. We will follow [ABS64] almost exactly, as the treatment there is not easy to
improve upon.

Let us prove the existence of the first isomorphism. We will denote by ẽ1,
. . . , ẽn+2 the canonical basis of Rn+2 ⊆ C̃n+2, e1, . . . , en the canonical basis of
Rn ⊆ Cn, ε1, ε2 the canonical basis of R2 ⊆ C̃2. According to Proposition 4.5, C̃n+2
is the universal algebra generated by the ẽi, with relations ẽ2

i = 1 and ẽi ẽj + ẽj ẽi = 0.
By a straightforward calculation using the identity (ε1ε2)2 = −ε2

1ε2
2 = −1,

one checks that the elements ei ⊗ ε1ε2 for i = 1, . . . , n, 1 ⊗ ε1 and 1 ⊗ ε2 of
Cn ⊗ C̃2 anticommute pairwise and have square 1; hence there is a homomor-
phism C̃n+2 → Cn ⊗R C̃2 sending ẽi into ei ⊗ ε1ε2 for i = 1, . . . , n, ẽn+1 into 1⊗ ε1
and ẽn+2 into 1⊗ ε2. Notice that the elements−ẽi ẽn+1 ẽn+2 of C̃n+2 map to ei ⊗ 1 in
Cn ⊗R C̃2; hence the image of C̃n+2 contains a set of generators of Cn ⊗R C̃2, and
the homomorphism is surjective. Since both algebras have dimension 2n+2, we see
that this is an isomorphism.

The argument for the second isomorphism is completely analogous. ♠

To apply the theorem we need to formulas for certain tensor products; we col-
lect these in the next statement.

Proposition 6.2.
(a) If A, B and C are K-algebras, we have

(A× B)⊗K C ' (A⊗K C)× (B⊗K C).

(b) If m and n are positive integers and A is a K-algebra, we have

Mm(K)⊗K Mn(A) ' Mmn(A).

(c) C⊗R C ' C×C.
(d) H⊗R C ' M2(C).
(e) H⊗R H ' M4(R).

These are all isomorphisms of algebras.

Proof. Part (a) is straightforward.
Let us prove part (b). The tensor product Km ⊗K An has a natural structure of

right A-module, in which the multiplication is given by the rule (v⊗ x)a = v⊗ xa.
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This module is free of rank mn: if (ei) is the canonical basis of Km, and (εj) is the
canonical basis of An, the tensor products ei ⊗ εj form a basis for Km ⊗K An.

If α ∈ Mm(K) = EndK(Km) and φ ∈ MA = EndA(AA), then α ⊗ φ : Km ⊗K
An → Km ⊗K An is endomorphism of the right A-module Km ⊗K An; there is a
unique K-linear map

Mm(K)⊗Mn(A) −→ EndA(Km ⊗K An) ' Mmn(A)

that sends α⊗ φ into α⊗ φ (the first is an element of a tensor product, the second
an endomorphism of a tensor product).

It is easy to check that this is a homomorphism of K-algebras. Also, both
Mm(K)⊗Mn(A) and EndA(Km⊗K An) are free left A-modules, and the map above
is A-linear. By looking at what happens to the natural basis of Mm(K)⊗Mn(A).

Part (c) is standard and easy: one send (a, b) ∈ C⊗R C into (ab, ab) ∈ C×C.
Parts (d) and (e) are standard consequences of the theory of central simple al-

gebras. They can be proved directly as follow.
The field C = R⊕Ri is naturally embedded in H = R⊕Ri⊕Rj⊕Rk; give H

the structure of right vector space over C via right multiplication; a basis is given
by 1 and j. Each element of H acts on H by left multiplication, and this action
is C-linear. This yields a homomorphism of R-algebras φ : H → M2(C), which
can be complexified, giving a homomorphism φC : H⊗R C → M2(C) defined by
φC(a⊗ α) = φ(a)α; and it is easy to check that this is an isomorphism.

To define the isomorphism H⊗R H→ M4(R), send a⊗ b into the linear endo-
morphism of H = R4 defined by x 7→ axb. We leave it to the reader to check that
this is an isomorphism of R-algebras. ♠

This allows us to compute all the Cn and C̃n. Let us start from our knowledge
of C1 = C, C̃2 = R×R, C2 = H and C̃2 = M2(R). We get

C3 = C̃1 ⊗C2 and C̃3 = C1 ⊗ C̃2

= (R×R)⊗H = C⊗M2(R)

= H×H = M2(C)

two results that we had already obtained. But we proceed further:

C4 = C̃2 ⊗C2 and C̃4 = C2 ⊗ C̃2

= M2(R)⊗H = H⊗M2(R)

= M2(H) = M2(H);

C5 = C̃3 ⊗C2 and C̃3 = C1 ⊗ C̃2

= M2(C)⊗H = (H×H)⊗M2(R)

= M2(R)⊗C⊗H = M2(H)×2 (H);

= M2(R)⊗M2(C)

= M4(C)
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C6 = C̃4 ⊗C2 and C̃6 = C4 ⊗ C̃2

= M2(H)⊗H = M2(H)⊗M2(R)

= M2(R)⊗H⊗H = M4(H);

= M2(R)⊗M4(R)

= M8(R)

and so on.
Proceeding in this way, we construct a table identifying all the Clifford algebras

Cn and C̃n for n from 0 to 8.

n Cn C̃n

0 R R

1 C R×R

2 H M2(R)

3 H×H M2(C)

4 M2(H) M2(H)

5 M4(C) M2(H)×M2(H)

6 M8(R) M4(H)

7 M8(R)×M8(R) M8(C)

8 M16(R) M16(R)

At this point the table becomes periodic.

Theorem 6.3. If k is a positive integer, we have C8k+n ' M16k (Cn) and C̃8k+n '
M16k (C̃n).

Proof. The result is easily reduced to the case k = 1.
We have for each n ≥ 0

Cn+4 = C̃n+2 ⊗C2

= Cn ⊗ C̃2 ⊗C2

= Cn ⊗C4,

and

Cn+8 = Cn+4 ⊗C4

= Cn ⊗C4 ⊗C4

= Cn ⊗C8

= Cn ⊗M16(R)

= M16(Cn).

Switching C and C̃ gives the second isomorphism. ♠
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One can also compute the even part C+
n .

Theorem 6.4. For each n > 0, there is an isomorphism of algebras Cn−1 ' C+
n .

Proof. For each i = 1, . . . , n− 1 consider the element eien of C+
n . An easy calculation

shows that (eien)2 = −1, and that eien anticommutes with ejen for i 6= j; hence
there exists a homomorphism of algebras Cn−1 → C+

n sending e1 into eien for each
i = 1, . . . , n− 1. This injective, because it sends a basis of Cn−1 into a part of a basis
of Cn; hence it is an isomorphism, because Cn−1 and C+

n have the same dimension
2n−1. ♠

This methods also apply to complex Clifford algebras. In fact, in this case the
two forms |x|2 and − |x|2 are isometric, hence C(Cn, |x|2) and C(Cn,− |x|2) are
isomorphic. So C(C2, |x|2) = C(C2,− |x|2), and from the analogue of Theorem 6.1
we can obtain the following result.

Theorem 6.5. The algebra C(Cn,− |x|2) is isomorphic to M2m(C) when n = 2m, and
to M2m(C)×M2m(C) when n = 2m + 1.

We will prove this again later (see Theorems 8.6 and 8.13). In fact the new
proof will be much more informative, as it will identify the simple modules over
C(Cn,− |x|2).

7. CLIFFORD MODULES

The results of the previous section, together with Theorem A.10, allows us to
compute the possible dimensions of modules over Clifford algebras. This is inter-
esting for several reasons: one of them is that it gives information on the possible
number of everywhere linearly independent vector fields on spheres.

Definition 7.1. Let n be a positive integer. The Radon–Hurwitz number K(m) is the
largest non-negative integer n such that Rm has a structure of left module over Cn.

Remark 7.2. Rm is always a module over C0 = R. It is not obvious that there is
an upper bound on the n’s such that Rm has a structure of left module over Cn;
however, from the next result it follows that K(m) is well defined, and in fact that
K(m) < m.

Theorem 7.3. For each m, there are K(m) vector fields on the sphere Sm−1 ⊆ Rm that
are linearly independent at every point.

Remark 7.4. A very deep result of Adams ([Ada62]) states that K(m) is in fact the
maximum possible number of everywhere linearly independent vector fields on
Sm−1.

The theorem is an immediate consequence of the following fact.

Proposition 7.5. For each m and n, there exists a structure of Cn-module on Rm if and
only if there exist σ1, . . . , σn in the orthogonal group Om(R), such that 〈x | σi(x)〉 = 0
for any x ∈ Rm and 〈σi(x) | σj(x)〉 = 0 for any x ∈ Rm and any i 6= j.

Proof. A structure of Cn module over Rm is a homomorphism of R-algebras Cn →
Mm(R). Because of the presentation of Cn by generators and relations, there is a
structure of Cn-module on Rm if and only if there exist σ1, . . . , σn in Mm such that
σ2

i = −1, and σiσj + σjσi = 0 for any i 6= j. On the other hand, I claim that if the
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σi exists, then they is a positive inner product on Rm with respect to which they
are orthogonal, hence they can be made orthogonal with respect to the standard
inner product 〈− | −〉 by a change of coordinates. To see this, consider the set Qn
of elements of Cn that are of the form ±1, or ±ei for some i = 1, . . . , n; this is a
finite subgroup of the group of units in Cn. A Cn-module structure on Rm gives a
representation of this finite group Qn on Rm; and then it is well known that there
is an invariant positive inner product on Rm. Since the ei are images in Mm(R) of
elements of Qm, the result is clear.

So there is a module structure on Rm if and only if there are orthogonal trans-
formation σ1, . . . , σn ∈ Om(R) satisfying the relations σ2

i = −1 and σiσj + σjσi = 0
for i 6= j. The following lemma ends the proof.

Lemma 7.6. Let α and β be in Om(R).
(a) α2 = −1 if and only if 〈x | α(x)〉 = 0 for all x ∈ Rm.
(b) If α2 = β2 = −1, then αβ + βα = 0 if and only if 〈α(x) | β(x)〉 = 0 for all x ∈ Rm.

Proof. Part (a): for any α ∈ Mm(R), the condition 〈x | α(x)〉 = 0 for all x is equiva-
lent to α = −αt. Since α is orthogonal, αt = α−1, and the result follows.

Part (b): since α2 = −1 and α is orthogonal, we have

〈α(x) | β(x)〉 = −〈x | αβ(x)〉.
Because of part (a), 〈α(x) | β(x)〉 = 0 if and only if αβαβ = (αβ)2 = −1. By
multiplying on the left by α and on the right by β we see that this is equivalent to
βα = −αβ, as claimed. ♠

Let us compute K(m). It follows from the results in Section 6 that each Cn is
either a matrix algebra over a division algebra, or a product of two copies of a
matrix algebra over a division algebra. Then we see from Theorem A.10 that that
there are either one or two simple modules over Cn, and that their dimensions as
real vector spaces are the same. So we deduce the following. For each n ≥ 0,
denote by L(n) the least m > 0 such that Rm has a structure of Cn-module.

Proposition 7.7. For any m ≥ 0 and any n ≥ 0, the vector space Rm has the structure
of module over Cn if and only if L(n) divides m.

Hence, K(m) is the largest positive integer n such that L(n) divides m.

Since we know the structure of Cn we can also compute L(n). If we write n =
8k + r, with k ≥ 0 and 0 ≤ r ≤ 7, then from Theorem 6.3 and Theorem A.10 we
know that L(n) = 16kL(r). On the other hand, again from Theorem A.10 we see
that

L(0) = 1

L(1) = 2

L(2) = L(3) = 4

L(4) = L(5) = L(6) = L(7) = 8.

From this we get the following result (we leave the elementary details to the
reader).

Theorem 7.8. Write m = 16k2lq, were 0 ≤ l ≤ 3 and q is odd. Then

K(n) = 8k + 2l − 1.
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8. THE SPINOR SPACE

In this section we will assume that K = C, and that q is the non-degenerate
quadratic form q(x) = −(x2

1 + · · ·+ x2
n) on V = Cn. We will denote the imaginary

unit in C by
√
−1.

Set n = 2m or n = 2m + 1, occording to whether n is even or odd. Take W and
W ′ to be two totally isotropic subspaces of V of dimension m such that W ∩W ′ =
{0}. More explicitly, we can define

wi =
√
−1 ei + ei+m

2
and w′i =

√
−1 ei − ei+m

2
for each i = 1, . . . , m. Then w1, . . . , wm, w′1, . . . , w′m are linearly independent in
Cn, and q(wi, wj) = q(w′i , w′j) = 0 for all i and j, q(wi, w′j) = 0 for i 6= j, and
q(wi, w′i) = 1/2. Hence

W def= 〈w1, . . . , wm〉 and W ′ def= 〈w′1, . . . , w′m〉
are totally isotropic, and their intersection is {0}.

When n = 2m, then w1, . . . , wm, w′1, . . . , w′m form a basis of V, and W ⊕W ′ = V.
When n = 2m + 1, we obtain a basis by adding

u0
def=
√
−1 e2m+1;

furthermore we set
U def= 〈u0〉 = 〈e2m+1〉,

so that V = W ⊕W ′ ⊕U.

Definition 8.1. The vector space
∧•W is the spinor space. The elements of

∧•W are
called spinors.

The point is that the spinor space is a module over C(Cn, q). The construction
is a little different according to whether n is even or odd.

The even case. Since Cn = W ⊕W ′, we will write any element of Cn in the form
w + w′, where w ∈W and w′ ∈W ′.

Theorem 8.2. There is a unique structure of C(Cn, q)-module on
∧•W, such that

(w + w′)x = w ∧ x + 2w′ ` x for any w + w′ ∈ Cn ⊆ C(Cn, q).

Proof. Uniqueness is clear from the fact that Cn generates C(Cn, q).
For existence, consider the linear map ψ : W ⊕W ′ = Cn → EndC

(∧•W
)

de-
fined by the formula

ψ(w + w′)x = w ∧ x + 2w′ ` x.
We have

ψ(w + w′)2x = ψ(w + w′)(w ∧ x + 2w′ ` x)

= w ∧ w ∧ x + 2w ∧ (w′ ` x) + w′ ` (w ∧ x) + 4w′ ` (w′ ` x)

= 2w ∧ (w′ ` x) + 2q(w′, w)x− 2w ∧ (w′ ` x)

= q(w + w′)x;

hence ψ(w + w′)2 = q(w + w′), and ψ extends to a homomorphism of C-algebras
C(Cn, q)→ EndC

(∧• Cn), which defines the required module structure. ♠
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We refer to
∧•W with this C(Cn, q)-module structure as the spinor module.

Here is an alternate construction of this module structure; it will not be used in
what follows.

The Clifford products in
∧•W and

∧•W ′ coincide with the wedge products,
since W and W ′ are totally isotropic; hence, by the functoriality of the Clifford
product,

∧•W and
∧•W ′ are subalgebras of C(Cn, q). Consider the linear map∧•W ⊗∧•W ′ // C(Cn, q);

a⊗ a′ � // aa′

this is not a homomorphism of algebras. I claim that this is an isomorphism of
C-vector spaces.

Since both the domain and the codomain have dimension 2n, it is enough to
show that it is surjective. It is well know that the C-linear map∧•W ⊗∧•W ′ //

∧•(W ⊕W ′)

x⊗ x′ � // x ∧ x′

is an isomorphism, and then surjectivity follows by standard arguments from
Proposition 5.7.

For each subset I ⊆ {1, . . . , n}, write

w′I
def= w′i1 . . . w′ik
= w′i1 ∧ · · · ∧ w′ik ,

where I = {i1, . . . , ik}, and i1 < · · · < ik. Of course w′∅ = 1. We set ω′ =
w′{1,...,n} = w′1 ∧ · · · ∧ w′n. Consider the C-linear map∧•W // C(Cn, q);

x � // xω′

it is the composition of the embedding∧•W ⊗∧•W ′ //
∧•W ⊗∧•W ′

x � // x⊗ω′

with the isomorphism
∧•W ⊗∧•W ′ ' C(Cn, q) above, hence it is an embedding.

Proposition 8.3. The image of
∧•W in C(Cn, q) is the left ideal generated by ω′. Fur-

thermore if w ∈W, w′ ∈W ′ and x ∈ ∧•W, we have

(w + w′)xω′ = (w ∧ x + 2w′ ` x)ω′.

So
∧•W becomes a left ideal in C(Cn, q), and the induce left module structure

is precisely that given by Theorem 8.2.

Remark 8.4. The bases w1, . . . , wm and w′1, . . . , w′m satisfy the condition q(wi, w′i) =
1/2. This seemingly strange factor 1/2 has been introduced so that the element w′i
of the Clifford algebra acts on the spinor space

∧•W by sending wi to 1. This is
sometimes convenient in calculations.

Proof. The image of
∧•W is obviously contained in the left ideal generated by ω′.

To prove the opposite inclusion, notice that for each w′ ∈ W ′ we have w′ ∧ω′ = 0
(for reasons of degree) and w′ ` ω′ = 0 (because W ′ is totally isotropic); hence
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w′ω′ = 0. Hence w′Iω
′ = 0 for any I ⊆ {1, . . . , n} with I 6= ∅. Any element of

C(V, q) can be written in the form ∑I xIw′I with aI ∈
∧•W, hence every element

of the left ideal generated by ω′ is of the form

∑
I

xIw′Iω
′ = x∅ω′.

This proves the first part.
For the second part, notice that for any w′ ∈W ′ and any x ∈ ∧•W we have

xw′ = x ∧ w′ + x a w′

= (−1)|x|(w′ ∧ x− w′ ` x)

= (−1)|x|(w′x− 2w′ ` x);

since xw′ω′ = 0, we get the formula (w′x)ω′ = 2(w′ ` x)ω′; hence

(w + w′)xω′ = (wx)ω′ + (w′x)ω′

= (w ∧ x)ω′ + 2(w′ ` x)ω′,

as claimed. ♠

Proposition 8.5.
∧•W is a simple module over C(Cn, q).

Proof. We will use the bases wi and w′j of W and W ′ constructed above, with the
property that q(wi, w′j) is 0 for i 6= j, and 1/2 for i = j. For each I ⊆ {1, . . . , n}
consider the element wI , defined as usual, in such a way that the wI form a basis of∧•W. Then, because of the way the C(Cn, q) module structure on

∧•W is defined,
we have

w′iwI =

{
0 if i /∈ I
±wI\{i} if i ∈ I;

hence if I and J are subsets of {1, . . . , n}we have that w′JwI = 0 whenever |I| < |J|,
or |I| = |J| and I 6= J; while w′JwJ = ±1. Assume that Z ⊆ ∧•W is a non-zero
submodule; choose z ∈ Z \ {0}, and write z as ∑I αIwI . Choose J ⊆ {1, . . . , n}
among those with αJ 6= 0, such that |J| is as large as possible. Then w′Jz = ±αJ ;
hence Z contains a non-zero scalar, hence it contains 1. Then it contains wI = wI1
for all I, so Z =

∧•W. ♠

This gives the structure of the Clifford algebra C(Cn, q).

Theorem 8.6. The homomorphism

C(Cn, q) −→ EndC

(∧•
W
)

that comes from the C(Cn, q)-module structure on
∧•W is an isomorphism.

Proof. From Proposition 8.5 and Corollary A.14 we see that it is surjective. Since
both spaces have dimension 2n we are done. ♠

From this we also see the structure of the even part C+(Cn, q). The point is
that EndC

(∧•W
)

has a Z/2Z-grading, in which the even part is formed by endo-
morphisms of

∧•W preserving the parity of vectors in
∧•W, hence it is a product

EndC

(∧+ W
)
× EndC

(∧−W
)
, while the odd part is formed by endomorphisms

that send even vectors into odd vectors, and odd vectors into even vectors. The
image of a vector in Cn into EndC

(∧•W
)

is odd, as one sees readily from the
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condition in Theorem 8.2; from the uniqueness of the grading (Proposition 4.3)
we get that the isomorphism is an isomorphism of Z/2Z-graded algebra. Hence
the module

∧•W splits as a direct sum of two C+(Cn, q)-submodules
∧+ W and∧−W, and we obtain the following.

Theorem 8.7. The homomorphism

C+(Cn, q) −→ EndC

(∧+
W
)
× EndC

(∧−
W
)

that comes from the C+(Cn, q)-module structures on
∧+ W and

∧−W is an isomorphism.
In particular, the two C+(Cn, q)-modules

∧+ W and
∧−W are simple and not iso-

morphic.

Definition 8.8. The two C+(Cn, q)-modules
∧+ W and

∧−W are called half-spinor
modules.

For later use, let us notice the following. If f ∈ On(C), by the functorialy of
the Clifford algebra f extends uniquely to an automorphism of C+(Cn, q), that
we still denote by f . For each C+(Cn, q)-module M, denote by M f the module
with the scalar multiplication twisted by f ; that is, if a ∈ C+(Cn, q) and x ∈ M,
the new scalar product aẋ equals f (a)x. Since

∧+ W and
∧−W are the only simple

modules over C(Cn, q), it is clear that there are two possibilities: either
(∧+ W

) f '∧+ W and
(∧−W

) f ' ∧−W, or
(∧+ W

) f ' ∧−W and
(∧−W

) f ' ∧+ W.

Proposition 8.9.

(a) If f ∈ SOn(C), then
(∧+ W

) f ' ∧+ W and
(∧−W

) f ' ∧−W.

(b) If f ∈ On \ SOn, then
(∧+ W

) f ' ∧−W and
(∧−W

) f ' ∧+ W.

The proof is postponed to page 33, after the proof of Theorem 9.9.

The odd case. When n = 2m + 1 the situation is a little different: the spinor space∧•W has two module structure over C(Cn, q). We have Cn = W ⊕W ′ ⊕U, where
U = 〈u0〉 as above; we let W ⊕W ′ operate by the same formula as before; u0 will
act on x ∈ ∧•W by multiplication by (−1)|x| in one case, and by multiplication by
(−1)|x|+1 in the other.

Theorem 8.10. There are two module structures on
∧•W, uniquely determined by the

formulas

(w + w′ + λu0)x = w ∧ x + 2w′ ` x + (−1)|x|λx

and
(w + w′ + λu0)x = w ∧ x + 2w′ ` x− (−1)|x|λx

for any w ∈W, w′ ∈W ′ and λ ∈ C.

Proof. As in the proof of Theorem 8.2, it is enough to show that the C-linear map
ψ : C(Cn, q)→ EndC

(∧•W
)

defined by one of the two formulas

ψ(w + w′ + λu0)x = w ∧ x + 2w′ ` x± (−1)|x|λx

has the property that ψ(w + w′ + λu0)2 = q(w + w′) + λ2.
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We have q(w + w′ + λu0) = 2q(w, w′) + λ2, and

ψ(w + w′ + λu0)2x = ψ(w + w′ + λu0)(w ∧ x + 2w′ ` x± (−1)|x|λx)

= 2w ∧ (w′ ` x)± (−1)|x|λw ∧ x

+ 2w′ ` (w ∧ x)± (−1)|x|λw ∧ x

± (−1)|x|+1λw ∧ x± (−1)|x|−1λw′ ` x + λ2x

= 2w ∧ (w′ ` x) + 2q(w, w′)x− 2w ∧ (w′ ` x) + λ2x

= q(w + w′ + λu0)x,

as claimed. ♠

We denote the two module structures by
∧•

1 W and
∧•

2 W respectively.
As in the even case, these module structures can be seen as given by embedding

the spinor space
∧•W into C(Cn, q) as left ideals.

First,
∧•W,

∧•W ′ and
∧•U are all embedded in C(Cn, q) as subalgebras, be-

cause the restriction of q to W, W ′ and U are all trivial; and the C-linear map∧•W ⊗∧•W ′ ⊗∧•U //
∧•(W ⊕W ′ ⊕U)

a⊗ a′ ⊗ b � // aa′b

is an isomorphism. Set ω′ = w′1 ∧ · · · ∧ w′m as before. Since u2
0 = 1 we have

u0(1± u0) = ±u0; furthermore u0ω′ = u0 ∧ ω′ = (−1)mω′ ∧ u0 = (−1)mω′u0.
We set

f1 = (1 + u0)ω′

= ω′
(
1 + (−1)mu0

)
and

f2 = (1− u0)ω′

= ω′
(
1− (−1)mu0

)
.

If w′ ∈ W ′ we have w′ fi = 0, while u0 f1 = f1, u0 f2 = − f2; hence the elements of∧•W ′ ⊆ ∧• V and
∧•U send fi into a multiple of itself. We deduce that the em-

bedding
∧•W ↪→ ∧•W ⊗ ∧•W ′

∧•U ' C(Cn, q) that sends x into x fi identifies∧•W with the left ideal generated by fi.

Proposition 8.11. If w ∈W, w′ ∈W ′, λ ∈ C and x ∈ ∧•W, we have

(w + w′ + λu0)x f1 =
(
w ∧ x + 2w′ ` x + (−1)|x|λ

)
x f1

and
(w + w′ + λu0)x f2 =

(
w ∧ x + 2w′ ` x− (−1)|x|λ

)
x f2

Hence the two module structures on these ideals are those whose existence is
asserted in Theorem 8.10.

We leave the proof to the reader.
To investigate these modules, notice that the embedding C2m = W ⊕W ′ ⊆ Cn

induces an embedding of algebras C(C2m, q) ⊆ C(Cn, q) (by abuse of notation we
denote by q both the quadratic form on Cn and its restriction to C2m). The restric-
tions of

∧•
1 W and of

∧•
2 W to C(C2m, q) both coincide with the spinor module on

C(C2m, q).
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Proposition 8.12.
∧•

1 W and
∧•

2 W are simple non-isomorphic modules over C(Cn, q).

Proof. The restrictions of
∧•

1 W and of
∧•

2 W to C(C2m, q) both coincide with the
spinor module on C(C2m, q), which is simple, according to Proposition 8.5; this
shows that

∧•
1 W and

∧•
2 W are simple.

Assume that φ :
∧•

1 W ' ∧•
2 W is an isomorphism of C(Cn, q)-modules. The

element u0 of C(Cn, q) acts as the identity on
∧+

1 W and on
∧−

2 W, and as mul-
tiplication by −1 on

∧−
1 W and on

∧+
2 W; hence φ induces an isomorphism of∧+

1 W with
∧−

2 W. The restrictions of
∧+

1 W and
∧−

2 W to the even part C+(C2m, 1)
coincide with

∧+ W with
∧−W, and φ induces an isomorphism of C+(C2m, 1)-

modules
∧+ W ' ∧−W; but, according to Theorem 8.7, this isomorphism can not

exist. ♠

Theorem 8.13. The homomorphism

C(Cn, q) −→ EndC

(∧•
W
)
× EndC

(∧•
W
)

that comes from the two C(Cn, q)-modules structure on
∧•W is an isomorphism.

Proof. From Proposition 8.12 and Corollary A.14 we see that it is surjective. Since
both spaces have dimension 2n we are done. ♠

We will also need to describe the even part C+(Cn, q). For this, we need to
produce a Z/2Z-grading on C(Cn, q) = EndC(

∧•W) × EndC(
∧•W), such that

V ⊆ C(Cn, q) be composed by elements of degree 1. This can be done by explot-
ing the natural Z/2Z-grading of EndC(

∧•W), used in the even case, such that the
even elements are those sending

∧+ W into
∧+ W and

∧−W into
∧−W, while an

odd element sends
∧+ W into

∧−W and
∧−W into

∧+ W. In this Z/2Z-grading,
the even elements of EndC(

∧•W)× EndC(
∧•W) consisting of pairs ( f , g), such

that g+ = f + and g− = − f− (here the superscript + and − denote even part and
odd part), while the odd part is made of elements with g+ = − f + and g− = f−.
We leave it to the reader to check that this is a grading; while it follows imme-
diately from the definition of the action of V on

∧•W that all the elements of
V ⊆ C(Cn, q) = EndC(

∧•W)× EndC(
∧•W) are odd.

Thus C+(Cn, q) is the subalgebra of EndC(
∧•W)× EndC(

∧•W) consisting of
elements of the form

(
f , ε( f )

)
, where ε is the main involution of EndC(

∧•W),
which changes the sign of the odd elements. From this we see that the first projec-
tion C+(Cn, q) → EndC(

∧•W) is an isomorphism, and identifying C(Cn, q) with
EndC(

∧•W), the second projection is the main involution ε. The two modules∧•
1 W and

∧•
2 W become isomorphic, and simple, when restricted to C+(Cn, q),

the isomorphism being the main involution of
∧•W. Let us record this as follows.

Theorem 8.14. The homomorphism C+(Cn, q) → EndC(
∧•W) coming from either of

the two C(Cn, 1) module structures on
∧•W is an isomorphism.

The canonical pairings. The spinor space
∧•W carries two very important bi-

linear form. Fix an element ω ∈ ∧m W \ {0}; for example, we can take ω
def=

w1 ∧ · · · ∧ wm. We define a linear function
∫

:
∧•W → C by the formula

xm =
(∫

x
)

ω

where x ∈ ∧•W, and xm denotes the component of degree m of x.
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Definition 8.15. The canonical pairings β :
∧•W × ∧•W → C and β :

∧•W ×∧•W → C are the bilinear forms defined by the formulas

β(x, y) =
∫

xt ∧ y

and
β(x, y) =

∫
x ∧ y.

Since x = ε(x)t, the two pairings are related by the formula

β(x, y) = β
(
ε(x), y

)
.

Proposition 8.16. The pairings β and β are non-degenerate.
The pairing β is symmetric when m ≡ 0 or m ≡ 1 (mod 4), and alternating when

m ≡ 2 or m ≡ 3 (mod 4).
The pairing β is symmetric when m ≡ 0 or m ≡ 3 (mod 4), and alternating when

m ≡ 2 or m ≡ 1 (mod 4).

Proof. The fact that β is non-degenerate is clear by the following easy fact. If {wI}
is the usual basis of

∧•W, where I ranges over the subsets of {1, . . . , n}, then
β(wI , wJ) = 0 unless I and J are complementary, in which case β(wI , wJ) = ±1.
Then it follows that β is also non-degenerate, because it differs by in an automor-
phism of the first factor.

For the second part of the statement, we need to prove the formula β(y, x) =
(−1)m(m−1)/2β(x, y) for all x and y in

∧•W. We may assume that x and y are
homogeneous; and then both sides are 0 unless |x|+ |y| = m, so we assume this.
We have

β(y, x) =
∫

yt ∧ x

=
∫

(xt ∧ y)t

=
∫

(−1)
m(m−1)

2 xt ∧ y

= (−1)
m(m−1)

2 β(x, y)

as claimed.
The proof of the third statement is similar, using the formula x = (−1)

|x|(|x|+1)
2 x.
♠

We have seen that C(Cn, q) is isomorphic to EndC(
∧•W) when n is even, and

to EndC(
∧•W) × EndC(

∧•W) when n is odd. The canonical pairing allows to
interpret the transposition on the Clifford algebra directly in terms of algebras of
endomorphisms. The non-degenerate pairing β allows to define a transposition
f 7→ f t in the algebra EndC(

∧•W) by the formula

β
(

f t(x), y
)

= β
(
x, f (y)

)
for all endomorphisms f :

∧•W → ∧•W and all x and y in
∧•W. The function

from EndC(
∧•W) to itself that sends f into f t is an anti-automorphism, that is, it

is C-linear, and such that ( f g)t = gt f t for any f and g in EndC(
∧•W).

Notice that by choosing a different element ω ∈ ∧m W \ {0} we change β by a
scalar, and this does not change the transposition constructed above.
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Proposition 8.17. Suppose that n = 2m. The main anti-automorphism−t in the Clifford
algebra C(Cn, q) corresponds to the transposition in EndC(

∧•W) relative to the pairing
β.

Proof. Since Cn ⊆ C(Cn, q) ' EndC(
∧•W) generates EndC(

∧•W) as an algebra,
it is enough to prove that the transposition relative to β leaves the elements of Cn

invariant. Since Cn = W ⊕W ′, and because of the way the action of Cn is defined,
it is enough to prove that β(w∧ x, y) = β(x, w∧ y) and β(w′ ` x, y) = β(x, w′ ` y)
for any w ∈W, w′ ∈W ′, x and y ∈ ∧•W.

The first equality is completely straightforward:

β(w ∧ x, y) =
∫

(w ∧ x)t ∧ y

=
∫

xt ∧ w ∧ y

= β(x, w ∧ y).

For the second one, we may assume that x and y are homogeneous. Furthermore,
both sides of the inequality are 0, unless |x|+ |y| = m + 1, so we may assume that
|x|+ |y| = m + 1. Then xt ∧ y = 0, so

0 = w′ ` (xt ∧ y)

= (w′ ` xt) ∧ y + (−1)|x|xt ∧ (w′ ` y)

= (x a w′)t ∧ y + (−1)|x|xt ∧ (w′ ` y)

= (−1)|x|+1((w′ ` x)t ∧ y− xt ∧ (w′ ` y)
)
;

by applying
∫

to the last line we get

0 =
∫

(w′ ` x)t ∧ y−
∫

xt ∧ (w′ ` y)

= β(w′ ` x, y)− β(x, w′ ` y);

and this concludes the proof. ♠

The odd case is a little more subtle. In this case C(Cn, q) is isomorphic to
EndC(

∧•W) × EndC(
∧•W); each of the two factors has a transposition −t rel-

ative to β.

Proposition 8.18. Suppose that n = 2m + 1. Then the anti-automorphism of the al-
gebra EndC(

∧•W)× EndC(
∧•W) that corresponds to the main anti-automorphism of

C(Cn, q) is given by the formula

( f , g) 7−→ ( f t, gt)

when m is even, and by
( f , g) 7−→ (gt, f t)

when m is odd.

Proof. We need to check that the image of an element of Cn = W ⊕W ′ ⊕ U in
invariant under the anti-automorphism above. We have done this in the proof of
Proposition 8.18 for the elements of W and W ′: consider now the action of the gen-
erator u0 of U. If ε denotes the main involution of

∧•W, defined by the formula
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ε(x) = (−1)|x|x, then u0 acts via (ε,−ε). I claim that εt = (−1)mε. This is equiv-
alent to the equality β

(
ε(x), y

)
= (−1)mβ

(
x, ε(y)

)
; to check this we may assume

that x ane y are homogeneous and |x|+ |y| = m. Then we have

β
(
ε(x), y

)
= (−1)|x|β(x, y)

while

β
(

x, ε(y)
)

= (−1)|y|β(x, y)

= (−1)m−|x|β(x, y)

= (−1)m(−1)|x|β(x, y)

from which the equality follows.
Thus, if m is even εt = ε, and (ε,−ε) is invariant under the involution ( f , g) 7→

( f t, gt); while if m is odd εt = −ε, and (ε,−ε) is invariant under the involution
( f , g) 7→ (gt, f t). This concludes the proof. ♠

9. PIN AND SPIN GROUPS

In this section K will be either R or C; V will correspondingly denote either Rn

or Cn. We will assume that n is at least 1.
In both cases, the quadratic form will be given by the formula q(x) = − |a|2;

and the notations On and SOn will refer to either On(R) and SOn(R) or On(R)
and SOn(R).

Definition 9.1. The pin group Pinn is the set of elements a ∈ C(V, q) satisfying the
following conditions.

(a) a ∈ C(V, q) is either even or odd.
(b) aa = 1.
(c) For any v ∈ V, ava−1 = ava is in V.

The spin group Spinn is the set of even elements in Pinn

Remark 9.2. The terminology “pin group” is a joke attributed to J.P. Serre. The
term“spin group” comes from the “spin representation” that Dirac introduced to
analyze the phenomenon of spin of elementary particles; but Serre suggested that
it might mean “special pin group”, like SOn is a “special orthogonal group” and
SLn is a “special linear group”.

We will write Pinn(R), Pinn(C), Spinn(R) and Spinn(C) when we need to dis-
tinguish between the real and complex case.

Clearly, Pinn and Spinn are subgroups of the group of units in C(V, q).
For each a ∈ Pinn, define a linear map ρ(a) : V → V by the formula

v 7−→ ε(a)va.
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I claim that ρ(a) is orthogonal: in fact, we have

|ρ(a)v|2 = −q(ρ(a)v)

= −(ρ(a)v)2

= −avaava
= −avva

= −q(v)aa

= |v|2

for any v ∈ V. This defines a map ρ : Pinn → On; it is easy to see that this is a
homomorphism of groups.

Remark 9.3. The embedding C(Rn, q) ⊆ C(Cn, q) sends Pinn(R) into Pinn(C) and
Spinn(R) into Spinn(C).

Remark 9.4. When a ∈ V, we have that aa = −a2 = −q(a) = |a|2; furthermore

ava = −ava

= −a
(
v ∧ a + q(a, v)

)
= −a ∧ (v ∧ a + q(a, v)

)
− a ` (v ∧ a + q(a, v)

)
= −a ∧ v ∧ a− q(a, v)a− q(a, v)a + q(a)v

= q(a)v− 2q(a, v)a ∈ V.

for any v ∈ V. Hence Pinn contains all vectors of length 1 in V.
If a ∈ V, |a|2 = 1, then

ρ(a)v = −ava

= v− 2〈a | v〉a.

Hence ρ(a)a = −a and ρ(a)v = v whenever v is orthogonal to a: in other words,
ρ(a) is the reflexion with respect to the hyperplane orthogonal to a.

Example 9.5. Consider the case n = 1. Then C(V, q) is a 2-dimensional alge-
bra over K, with basis 1, e1, and e2

1 = −1. Conjugation is given by the formula
a0 + a1e1 = a0 − a1e1. All the elements of the algebra satisfy the condition that
ava−1 ∈ V for all v ∈ V, since the algebra is commutative. The even element sat-
isfying aa = 1 are ±1, while the odd elements are ±e1. Since e2

1 = −1, the group
Pin1 is cyclic of order 4, generated by e1, while Spin1 is the subgroup {±1}.

The group O1 is cyclic of order 2, generated by the reflexion e1 7→ −e1; by
Remark 9.4, or by an immediate computation, we see that ρ : Pin1 → O1 sends e1
into this reflexion. The kernel of this homomorphism is {±1} = Spin1.

In this case the real and complex groups coincide.

Example 9.6. Let us analyze the case n = 2. The group Spin2 is contained in
the group of units of the algebra C+(V, q), which is 2-dimensional, with basis 1,
ι

def= e1e2. The product is determined by the condition ι2 = −1, and conjugation is
given by the formula a + bι = a− bι; furthermore

(a + bι)(a + bι) = a2 + b2.
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Also, we have that the odd part of C(V, q) in this case coincides with V; so, since
ava is odd for any v ∈ V and any a ∈ C+(V, q), we have that it is automatically in
V. Hence Spin2 is given by the elements a + bι satisfying the condition a2 + b2 = 1.
So Spin2(R) is the circle group S1. In the complex case we have the factorization

a2 + b2 = (a + ib)(a + ib)

Spin2(C) is isomorphic to C∗, the isomorphism Spin2(C) → C∗ being the map
a + bι 7→ a + ib.

Notice that Spin2 is isomorphic to SO2; the isomorphism φ is obtained by send-
ing an element a + bι into the matrix

φ(a + bι) def=
(

a −b
b a

)
;

the existence of this isomorphism a peculiarity of the case n = 2. We have the
relations ιe1 = e2 = −e1ι and ιe2 = −e1 = −e2ι, from which we deduce that
φ(a)v = av for all a ∈ Spin2 and v ∈ V.

However, the homomorphism ρ is not an isomorphism. In fact, we have that
ι anticommutes with all the elements of V, hence va = av for all a ∈ Spin2 and
v ∈ V; so ava = a2v = φ(a2)v. The homomorphism ρ can be identified with the
map a 7→ a2 from S1 to itself (in the real case) or C∗ to itself (in the complex case).
This homomorphism is surjective, with kernel {±1}.

The group Pin2 is more complicated, we will describe it briefly without proofs.
It contains Spin2 as a subgroup of index 2; besides the elements Spin2, it contains
all the vectors of V of length 1. For any such vector v and any a ∈ Spin2, we have
vav−1 = −a. Thus, it looks very much like O2; but O2 is a semidirect product of
a cyclic group of order 2 with SO2, while Pin2 is not a semidirect product. One
can show that there are exactly two extensions of a cyclic group of order 2 by
Spin2 = SO2 inducing the given action of the cyclic group on Spin2, and these are
precisely O2 and Pin2.

Remark 9.7. The previous analysis of the structure of Spin2 is very important.
It can be applied in the following situation. Suppose that Z is a 2-dimensional
subspace of V, such that the restriction of q to Z is non-degenerate (of course this
is always verified when K = R). Then Z has an orthogonal basis ε1, ε2 with
|ε1|2 = |ε2|2 = 1; the Clifford algebra C(Z, q|Z) is isomorphic to C(K2, q); hence
the elements of type a + bε1ε2, with a, b ∈ K, a2 + b2 = 1, form a subgroup of the
group of units of C(Z, q|Z) that is isomorphic to S1 or to C∗, according to whether
K is R or C.

I claim that this subgroup is contained in Spinn. In fact, the element a + bε1ε2
can be written as ε1(−a + bε2); both ε1 and −a + bε2 are vectors of length 1, so are
in Pinn, so their product is an even element in Pinn.

Thus, Spinn contains many copies of S1 (in the real case) or of C∗ (in the complex
case).

When K = C it may happen that q|Z is degenerate. Suppose that is has rank 1;
choose an element v ∈ Z with |v|2 = 1, and another element u ∈ Z that generates
the radical of q|Z. For any λ ∈ C, the element 1 + λvu ∈ C(Z, q|Z) ⊆ C(Cn, q) is
contained in Spinn(C). In fact, it is clearly even, and it can be written as v(−v +
λu): both factors v and −v + λu are vectors of length 1 in Cn.



NOTES ON CLIFFORD ALGEBRAS, SPIN GROUPS AND TRIALITY 31

There is an embedding of algebraic varieties C ↪→ Spinn(C). I claim that this
is a homomorphism of groups; hence, it makes C into an algebraic subgroup of
Spinn. In fact, we have

(1 + λvu)(1 + λ′vu) = 1 + (λ + λ′)vu + λλ′(vu)2

= 1 + (λ + λ′)vu− λλ′v2u2

= 1 + (λ + λ′)vu.

Thus, Spinn(C) contains also copies of the additive group C.

Example 9.8. The previous examples were very anomalous; the case n = 3 is
more representative of the general case. The even part C+(V, q) is 4-dimensional,
with a basis consisting of 1, ε1

def= e2e3, ε2
def= e3e1 and ε3

def= e1e2. These elements
satisfy the relations ε2

i = −1, and εiεj + εjεi = 0 for all i 6= j; hence C+(R3, q) is
the quaternion algebra H; while in the complex case we know that C+(C3, q) is
isomorphic to M2(C). An explicit isomorphism can be obtained by setting

ε1 =
(

i 0
0 −i

)
, ε2 =

(
0 1
−1 0

)
and ε3 = ε2ε3 =

(
0 i
i 0

)
Both in the real and complex case, conjugation is given by the formula

a0 + a1ε1 + a2ε2 + a3ε3 = a0 − a1ε1 − a2ε2 − a3ε3;

hence

(a0 + a1ε1 + a2ε2 + a3ε3)(a0 + a1ε1 + a2ε2 + a3ε3) = a2
0 + a2

1 + a2
2 + a2

3.

Notice that for any a ∈ C+(V, q) and v ∈ V, the element ava is odd, hence it
is a combination of elements of degree 1 (that is, vectors in V) and 3. However,
we have ava = ava = −ava; because of the formula x = (−1)|x|(|x|+1)/2, we
see that the part of degree 3 in that ava is 0, hence ava is always in V. So, Spin3
is the group of elements of rC+(V, q) of the form a0 + a1ε1 + a2ε2 + a3ε3, with
a2

0 + a2
1 + a2

2 + a2
3 = 1.

When K = R, we see that Spin3(R) is the group S3 of quaternions of norm 1. In
the complex case, we have identified the element a0 + a1ε1 + a2ε2 + a3ε3 with the
matrix (

a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

)
whose determinant is precisely a2

0 + a2
1 + a2

2 + a2
3. Hence, Spin3(C) is isomorphic

to SL2(C).

Theorem 9.9.

(a) The group Pinn(R) is a compact Lie subgroup of C(Rn, q)0 of dimension n(n− 1)/2.
The group Pinn(C) is an algebraic subgroup of C(Cn, q)0 of complex dimension
n(n− 1)/2.

(b) The map ρ : Pinn → On is a homomorphism of Lie groups (when K = R) or of
algebraic groups (when K = C). It is surjective, and its kernel is {±1}.

(c) Every element of Pinn is a product of vectors of length 1 in V. In particular, Pinn is
generated by the vectors v ∈ V with |v| = 1.
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Proof. One checks immediately that Pinn is a subgroup of the group of units C(V, q)0

in C(V, q). When K = R, the group C(Rn, q)0 is an open subset of the euclidean
space C(V, q) = R2n

; when K = C, C(Cn, q)0 will be a Zariski open subset of
C(Cn, q) = C2n

. Multiplication is defined by a bilinear function: hence C(Rn, q)0

becomes a Lie group, while C(Cn, q)0 is an algebraic group.
It follows immediately from the definition that Pinn(C) is a Zariski-closed sub-

group subset of C(Cn, q); so it is a Zariski-closed subgroup of C(Cn, q)0, hence it
is an algebraic group. On the other hand, Pinn(R) is a closed subgroup of the Lie
group C(Rn, q)0, so it is a Lie subgroup ([Var84, Theorem 2.12.6]).

Notice that Spinn and Pinn \ Spinn are open and closed subsets of Pinn, since
they are obtained by intersecting Pinn with the linear subspaces C+(V, q) and
C−(V, q). The homomorphism ρ is differentiable (when K = R) or algebraic (when
K = C), because it is defined by polynomial functions in each of these two open
subsets.

To show that ρ : Pinn → On is surjective, take a vector a ∈ V with |a|2 = 1, and
consider the homomorphism ρ(a) ∈ On; according to Remark 9.4, this a reflexion
along the hyperplane orthogonal to a. Then the surjectivity of ρ follows from the
following Lemma.

Lemma 9.10. Every element of On is a product of reflexions along hyperplanes orthogonal
to vectors of length 1.

Sketch of proof. We proceed by induction on n, starting from the case n = 1, which
is obvious.

Let A ∈ On. Set v = en, w = Aen. I claim that there exists B ∈ On that is product
of at most 2 reflexions such that Bv = w.

Suppose that |v− w|2 6= 0. Then one checks that the reflexion along the hyper-
plane orthogonal to v− w switches v and w (the easiest way to do this is to notice
that since |v|2 = |w|2 = 1, v − w and v + w are orthogonal, hence this reflexion
sends v− w into w− v and leave v + w fixed).

If |v− w|2 = 0, then |v + w|2 6= 0, because |v− w|2 + |v + w|2 = 4; then we can
first reflect along the hyperplane orthogonal to w, sending w in −w, then reflect
along the hyperplane orthogonal to v + w.

So we have B−1 Aen = en; hence B−1 A ∈ On−1 ⊆ On, and we use the induction
hypothesis. ♠

Obviously {±1} is contained in the kernel of ρ : Pinn → On, so we need to
prove the reverse inclusion. Let a ∈ Pinn be an element of the kernel of ρ. If a
is odd, then ava−1 = −ava = −v for any v ∈ V; this mean that a anticommutes
with v. On the other hand, if a is even then ava−1 = ava = v for all v ∈ V,
and a commutes with v for all v ∈ V. Then the statement follows easily from the
following lemma.

Lemma 9.11.

(a) If an odd element of C(V, q) anticommutes with all the elements of V, then it is 0.
(b) If an even element of C(V, q) commutes with all the elements of V, then it is a scalar.

Proof. For (a), suppose that a is odd, and av + va = 0 for all v ∈ V. Since a contains
only elements of odd degree, we have v ∧ a = −a ∧ v and v ` a = a a v, hence
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2v ` a = av + va = 0 for all v ∈ V. By Lemma 3.4, a is a scalar, hence a = 0, which
is a contradiction, because a is invertible.

For (b), suppose that a is even and av − va = 0 for all v ∈ V, and we have
v ∧ a = a ∧ v and v ` a = −a a v. So 2v ` a = av− va = 0 for all v ∈ V, and,
again from Lemma 3.4, we conclude that a is a scalar. ♠

So a can not be odd, because a is invertible, hence not 0. So a is a scalar; since
a2 = aa = 1 we have a = ±1, as we were claiming.

Since ρ : Spinn → On is a surjective homomorphism of Lie groups, or algebraic
groups, with kernel {±1}, it is a double cover. So the dimension of Pinn equals
the dimension of On, which is n(n− 1)/2. Furthermore, Pinn(R) is compact, since
On(R) is compact.

We have left to show that every element of Pinn is a product of vectors of
length 1. By Remark 9.4 and Lemma 9.10, and because the kernel of ρ is {±1},
which is contained in the center of Pinn, we have that every element of Pinn can
be written in the form ±v1 . . . vk for certain v1, . . . , vk of length 1 in V. If the sign is
negative, we use the fact that e2

1 = −1 (recall that we are assuming n ≥ 1) to write
it as e2

1v1 . . . vk. This concludes the proof of the theorem. ♠

Proof of Proposition 8.9. Lift f ∈ On to an element u ∈ Pinn ⊆ C+(Cn, q); if f ∈ SOn
then u is even, otherwise it is odd. The extension of f to C+(Cn, q) is given by
a 7→ uau−1; it is easy to check that the linear automorphism of

∧•W defined
by x 7→ ux gives an isomorphism

∧•W '
(∧•W

) f . On the other hand when u is
even then this automorphism sends

∧+ W and
∧−W into themselves, while when

it is odd it switches them. Thus the restrictions of this automorphism to
∧+ W and

to
∧−W yield the desidered isomorphisms. ♠

Theorem 9.12.
(a) Spinn is a subgroup of index 2 in Pinn
(b) Spinn = ρ−1(SOn); hence Spinn is an open and closed subgroup of Pinn.
(c) ρ : Spinn → SOn is surjective, with kernel {±1}.
(d) If n ≥ 2, then Spinn is the connected component of the identity in Pinn.
(e) If n ≥ 2, the commutator subgroup of Pinn is Spinn.
(f) If n ≥ 3, the commutator subgroup of Spinn is Spinn itself.

Proof. Consider the function Pinn → {±1} that sends each element of Pinn into its
sign. The group Pinn contains at least one odd element, for example e1, thus the
homomorphism is surjective, and its kernel is precisely Spinn. This proves (a).

For (b), take an element a of Pinn, and write it as a product v1 . . . vk of vectors
of length 1. If k is even then a is also even, so it is in Spinn, and ρ(a) is a product
of an even number of reflexions, hence it has determinant 1; while if k is odd a is
not in Spinn, and ρ(a) has determinant −1.

(c) follows immediately from (b) and from Theorem 9.9 (b).
For (d), since the connected component of the identitity is a subgroup of Spinn,

and every element of Spinn is the product of an even number of vectors of length 1,
it is enough to show that every product vw of two vectors of length 1 is in this
connected component.

If v and w are linearly dependend, then w = ±v, and correspondingly vw = ∓1;
so we need to show that −1 is in the connected component of 1. It follows from
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Remark 9.7 that the elements of the form a + be1e2, with a, b ∈ K and a2 + b2 =
1 form a subgroup of Spinn that is isomorphic and homeomorphic to the circle
group (S1 or C∗, depending on the base field), and so is connected; obviously this
contains both 1 and −1.

Otherwise, let Z be the subspace generated by v and w. The rank of q|Z can
be either 1 or 2. In case it has rank 1 (which can only happen when K is C), let
u be a generator of the radical of q|Z. The vectors of length 1 in Z all have the
form ±v + αu, with α ∈ C. If w = −v + αu, then vw = 1 + λvu, so vw is in the
image of the map C→ Spinn that sends λ into 1 + λvu, thus it is in the connected
component of 1. If w has the form v + λu, then −w has the required form, and so
−vw = v(−w) is in the connected component of 1. But then so is vw, because −1
is in this component.

Finally, if the restriction of q to Z is non-degenerate, set ε1 = v, and call ε2 an
element of Z of length 1 that is othogonal to v. We can write w = aε1 + bε2, with
a2 + b2 = 1; then vw = −a + bε1ε2, and vw is in the image of a map from the circle
group, again by Remark 9.7.

This ends the proof of (d).
For (e), notice that since Spinn has index 2 in Pinn, the commutator subgroup of

Pinn is contained in Spinn. For the reverse inclusion, we see from Theorem (c) that
every element of Spinn is the product of an even number of vectors of length 1;
hence it is enough to show that every product of two vectors of length 1 is in the
commutator subgroup.

Let us notice the following: if v and w are vectors of length 1, then

[v, w] = vwv−1w−1

= vw(−v)(−w)

= (vw)2.

Consider a product vw, where v and w are vectors of length 1. If v and w are
linearly dependent, then w = ±v, and vw = ∓1. We have that 1 is obviously a
commutator, while [e1, e2] = (e1e2)2 = −1.

Next, assume that v and w are linearly independent, and call Z the subspace
of V that they generate. Assume that the restriction of the quadratic form 〈− | −〉
to Z is degenerate; let u be a generator of the radical of q|Z. Then w is of the
form ±v + αu. If w = v + αu, then vw = (−1)v(−w); since we know that −1 is
a commutator, we may assume that w = −v + αu. We have that

∣∣−v + α
2 u
∣∣2 =

|v|2 = 1, and [
v,−v +

α

2
u
]

=
(

v(−v +
α

2
u)
)2

=
(

1 +
α

2
vu
)2

= 1 + αvu
= vw

Now the case when v and w are linearly independent, and the restriction of
〈− | −〉 the subspace Z is non-degenerate. Set ε1 = v, and let ε2 be a vector of Z
that is orthogonal to ε1, with |ε2|2 = 1. Write w = aε1 + bε2; we have a2 + b2 = 1.
Consider the subgroup S of elements of Spinn of the form α + βε1ε2, with α, β ∈ K,
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α2 + β2 = 1, as in Remark 9.7. Then

vw = ε1(aε1 + bε2)
= −a + ε1ε2

∈ S.

Since S is isomorphic to either S1 or C∗, it is a divisible group, so we can find
α + βε1ε2 ∈ S with (αε1 + βε2)2 = −a + ε1ε2. If we set z = −αε1 + βε2 ∈ Z, we
have that vz = α + βε1ε2; hence [v, z] = (vz)2 = vw, and this ends the proof of (e).

More precisely, we have shown that Spinn is generated by commutators of the
form [v, w], where v and w are vectors of length 1 in V. To prove (f) it is enough
to show that every commutator of the form [v, w] as above is a commutator of two
elements of Spinn. But since n ≥ 3, given v and w in V we can choose a vector
z ∈ V that is orthogonal to v and w, and such that |z|2 = 1. Then z anticommutes
with v and w, hence

[vz, wz] = vzwz(vz)−1(wz)−1

= vzwzzvzw
= −vzwvzw
= −vzzwvw
= vwvw

= [v, w];

this ends the proof, since vz and wz are in Spinn. ♠

We can also determine the Lie algebra of Spinn. Since the homomorphism
ρ : Spinn → SOn is surjective with finite kernel, ρ is a local diffeomorphism, and
thus induces an isomorphism of the Lie algebra of Spinn with the Lie algebra son
of SOn. On the other hand, since Spinn is a subgroup of the algebra C(V, q), its Lie
algebra is a subalgebra of C(V, q) =

∧• V.

Proposition 9.13. The Lie algebra of Spinn is
∧2 V ⊆ C(V, q).

This gives a more conceptual proof of Theorem 5.9.

Proof. Call L the Lie algebra of Spinn. Since the dimension of Spinn is n(n− 1)/2,
which is the dimension of

∧2 V, it is enough to prove that L is contained in
∧2 V.

Consider the equations that define Spinn. Since Spinn is contained in C+(V, a),
which is a linear subspace, L will be contained in C+(V, a) =

∧+ V.
The other conditions that define Spinn are not linear, so we need to differentiate.
The conjugation map a 7→ a from C(V, q) to itself is linear; hence by differ-

entiating the function a 7→ aa at the origin we get the map x 7→ x + x. So L
is contained in the subspace of elements x ∈ ∧• V such that x + x = 0. Since
x = (−1)|x|(|x|+1)/2 and x is even, we see that the homogeneous components of x
are of degree 2k, where k is odd.

By differentiating the condition that ava ∈ V for all v ∈ V, we get that L is
contained in the subspace L0 of elements x of

∧• V of degree 2k, with k odd, such
that xv− vx = xv + vx ∈ V for all v ∈ V. If x ∈ L0, since x has only components
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of even degree, we see that

xv− vx = x ∧ v + x a v− v ∧ x− v ` x
= −2v ` x.

If we write x = x2 + x6 + x10 + . . . as a sum of components of various degrees, we
have

v ` x6 = v ` x10 = · · · = 0
for all v ∈ V. By Lemma 3.4, since the form q is non-degenerate we have x6 =
x10 = · · · = 0; so L0 ⊆

∧2 V. This show that L ⊆ ∧2 V, and concludes the
proof. ♠

The center of the spin group. Let us determine the center of the spin group. This
center contains at least the subgroup {±1}. Consider the element η

def= e1 . . . en ∈
Pinn; if n is even, then η is in Spinn.

Theorem 9.14. Assume that n ≥ 3.
If n is odd, then the center of Spinn is {±1}.
If n is even, the center of Spinn is the subgroup {±1,±η}. If n ≡ 0 (mod 4), then η

has order 2, and the center is isomorphic to Z/2Z×Z/2Z; if n ≡ 2 (mod 4), then η
has order 4, and the center is cyclic of order 4.

Proof. Since {±1} is contained in the center of Spinn, the center of Spinn is the
inverse image in Spinn of the center of SOn. We will prove the well known and
easy fact that if n is odd the center of SOn is trivial, while when n is even consists
of {±In}. Then the first two statement follow, because the image of η in SOn is
the composition of the reflexions along all the coordinate hyperplanes, which is
clearly −In.

To prove this, let A ∈ SOn be in the center. Notice that if Z ⊆ Cn is a 2-
dimensional linear subspace such that q|Z is non-degenerate, then Cn = Z⊕ Z⊥,
and we have an element B of SOn that acts like the identity on Z⊥ and like multi-
plication by −1 on Z. Since A commutes with B we see that A sends Z into itself.

Take v ∈ Cn such that |v|2 6= 0. Then since n ≥ 3, we can find w1 and w2, such
that |w1|2 6= 0, |w2|2 6= 0, and 〈v |w1〉 = 〈v |w2〉 = 〈w1 |w2〉 = 0. The restriction
of q to the subspaces Z1 and Z2 generated respectively by {v, w1} and by {v, w2}
is non-degenerate, hence A sends 〈v〉 = Z1 ∩ Z2 into itself. So A sends e1, . . . , en
and e1 + · · ·+ en into multiples of themselves, so it is a scalar matrix. But the only
scalar matrices in SOn are In, and −In if n is even.

To determine the structure of the center of Spinn when n is even, notice that

η2 = (−1)
n(n−1)

2 ηηt

= (−1)
n(n−1)

2 e1 . . . enen . . . e1

= (−1)
n(n−1)

2 (−1)n

= (−1)n/2

which is easily seen to imply the result. ♠

Remark 9.15. It is easy to see directly that η is in the center of Spinn when n is
even: the point is ei anti-commutes with ej when i 6= j, while it commutes with ei
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itself: hence ηei = (−1)n−1eiη = −eiη. So ηv = −vη for any v ∈ V, and the result
follows, because every element of Spinn is a product of a finite number of vectors
of length 1.

THE SPIN REPRESENTATION

The group Spinn(C) is contained the group of units in C+(Cn, q); hence every
module over C+(Cn, q) gives a representation of Spinn(C), and also of Spinn(R),
since Spinn(R) is contained in Spinn(C). The spinor space

∧•W has a structure
of C+(Cn, q)-module; when n is odd this is irreducible, while when n is even this
splits as the sum of two half-spinor spaces

∧+ W and
∧−W, each of which is

irreeducible.
So we get the spin representation

∧•W of Spinn(C) and Spinn(R). When n is
even the spin representation is the sum of two half-spin representations

∧+ W and∧−W. These are often called chiral spin representations by physicists.

Proposition 9.16. If n is odd, the spin representation
∧•W of Spin(R) and of Spinn(C)

is irreducible. If n is even, then each of the two half-spin representations
∧+ W and

∧−W
of Spin(R) and of Spinn(C) is irreducible.

Proof. Suppose that n is odd; we know that the spin C+(Cn, q)-module
∧•W is

simple. If Z is a subspace of
∧•W, the set elements of C+(Cn, q) that send Z

into itself form a subalgebra of C+(Cn, q). Since the elements of C(Cn, q) of the
form eiej are in Spinn(R) ⊆ Spinn(C) and generate C+(Cn, q), the first statement
follows.

The second statement is proved analogously, because we know that each of the
two half-spin C+(Cn, q)-modules is simple. ♠

Examples 9.17. Let us work out the structure of the spin and half-spin represen-
tations when n = 2 and n = 3. We rely on our analysis of the structures of Spin2
and Spin3 carried out in Examples 9.6 and 9.8.

In these cases W is 1-dimensional, generated by w1 = 1
2 (ie1 + e2), while W ′ is

generated by w′1 = 1
2 (ie1 − e2). The spinor space

∧•W = C⊕W has a basis 1, w1;
we will write all the endomorphisms of

∧•W as matrices relative to these basis.
The half-spinor spaces are

∧+ W = C and
∧−W = W.

(a) Assume that n = 2. Then w1 acts on
∧•W by sending 1 to w1 and w1 to 0,

while w′1 sends 1 to 0; thus under the isomorphism C(C2, 2) ' EndC(
∧•W) =

M2(C) the element w1 and w′1 correspond to the matrices(
0 0
1 0

)
and

(
0 1
0 0

)
.

Since e1 = −i(w1 + w′1) and e2 = w1 − w′1, we see that e1 and e2 correspond to(
0 −i
−i 0

)
and

(
0 1
−1 0

)
.

Hence e1e2 acts like the matrix (
i 0
0 −i

)
;
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an element of Spin2, which is of the form a + be1e2, with a, b ∈ K with a2 + b2 =
1, acts on the spinor space by multplication by a + ib on

∧+ W = C, and by
multiplication by a− ib = (a + ib)−1 on

∧−W = W. Since the isomorphisms
Spin2(R) ' S1 and Spin2(C) ' C∗ are obtained precisely by sending a +
be1e2 into a + ib, we see that the even half-spin representation is the natural
1-dimensional of the real or complex circle group by multiplication, while the
odd half-spin representation is its dual, multiplication by the inverse.

(b) Now we assume n = 3. The elements e1 and e2 act as in the previous case,
while u0 = ie3 acts via the matrix(

1 0
0 −1

)
.

From this we see that element ε1 = e2e3, ε2 = e3e1 and ε3 = e1e2 correspond to
the matrices (

0 i
i 0

)
,
(

0 −1
1 0

)
and

(
i 0
0 −i

)
;

hence an element of Spin3, which is written as a0 + a1ε1 + a2ε2 + a3ε3, where
the ai are scalars satisfying a2

0 + a2
1 + a2

2 + a2
3 = 1, corresponds to the matrix(

a0 + ia3 −a1 + ia2
a1 + ia2 a0 − ia3

)
.

The determinant of this matrix is precisely a2
0 + a2

1 + a2
2 + a2

3; so we see how the
spin representation yields an isomorphism of Spin3(C) with SL2(C). Under
this isomorphism, the elements of Spin3(R) correspond to matrices of the form
above where all the ai are real; but it is easy to see how these matrices are
precisely the unitary matrices of determinant 1. So the spin representation
also gives an isomorphism of Spin3(R) with SU2.

Proposition 9.18. Assume that n ≥ 3. Then the spin representation Spin→ GL(
∧•W)

factors through SL(
∧•W). Furthermore, if n is even each of the half-spin representa-

tions Spinn → GL(
∧+ W) and Spinn → GL(

∧−W) factor through SL(
∧+ W) and

SL(
∧−W) respectively.

Proof. This follows from Theorem 9.12 (f). ♠

Corollary 9.19. We have isomorphisms of algebraic groups

Spin3(C) ' SL2(C)

and
Spin4(C) ' SL2(C)× SL2(C).

Proof. For the first one, Spin3(C) is embedded in the group of units of C(C3, q) =
EndC(

∧•W), which is GL2(C); because of Proposition 9.18 we have that Spin3
is embedded in SL2(C). Since Spin3(C) and SL2(C) both have dimension 3, and
SL2(C) is connected, the result follows.

For the second one the argument is similar: Spin4(C) is embedded in the group
of units of C+(C4, q) = EndC(

∧+ W)× EndC(
∧−W), which is GL2(C)×GL2(C),

; because of Proposition 9.18 it is embedded in SL2(C)×SL2(C). Since both groups
have dimension 6 and SL2(C)× SL2(C) is connected, the conclusion follows. ♠
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Notice the isomorphism Spin3(C) ' SL2(C) has been constructed direcly in
Example 9.8.

There are other “exceptional” isomorphisms of Spin5 and Spin6 with other known
algebraic groups; these require the introduction of some structure on the spinor
space.

The canonical pairings: the even case. Now we assume that n is even, n = 2m.
We have defined the canonical pairings β, β :

∧•W × ∧•W → C, which are
symmetric or alternating depending on m (Proposition 8.16). Recall if a group G
acts linearly on a K-vector space Z, a bilinear pairing h : Z × Z → K is said to be
invariant under G if h(gx, gy) = h(x, y) for all g ∈ G and all x, y ∈ Z.

Theorem 9.20. The form β is invariant under the action of Spinn, while β is invariant
under the action of Pinn.

Proof. Here is the basic fact, that will be also be very useful later.

Lemma 9.21. For any v ∈ V, x and y ∈ ∧•W, we have the relations

β(vx, y) = β(x, vy), β(vx, y) = −β(x, vy)

and

β(vx, vy) = − |v|2 β(x, y), β(vx, vy) = |v|2 β(x, y).

Proof. Let us prove that β(vx, y) = β(x, vy). We may assume that v is either in W
or in W ′. In the first case, vx = v ∧ x, and the result is immediate:

β(vx, y) =
∫

(v ∧ x)t ∧ y

=
∫

xt ∧ v ∧ y

= β(x, vy).

If v ∈ W ′ then vx = 2v ` x, and the proof is a little more elaborate. We may
assume that x and y are homogeneous. Notice that both sides of the equality are
zero unless |x|+ |y| = m + 1; and then we have xt ∧ y = 0, so

0 = v ` (xt ∧ y)

= (v ` xt) ∧ y + (−1)|x|xt ∧ (v ` y)

= (−1)|x|−1((xt ` v) ∧ y− xt ∧ (v ` y)
)

= (−1)|x|−1((v ` x)t ∧ y− xt ∧ (v ` y)
)
.

By integrating we obtain the equality

β(vx, y) = 2
∫

(v ` x)t ∧ y

= 2
∫

xt ∧ (v ` y)

= β(x, vy).
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The other equalities follow from the first. We have

β(vx, vy) = β(x, v2xy)

= q(v)β(x, y)

= − |v|2 β(x, y)

and

β(vx, y) = β
(
ε(vx), y

)
= −β

(
vε(x), y

)
= −β

(
ε(x), vy

)
= −β(x, vy).

The argument for the fourth equality is similar. ♠

The theorem follows immediately from Lemma 9.21, and from the fact that ev-
ery element of Pinn is a product of vectors of length 1, while every element of
Spinn is a product of an even number of vectors of length 1. ♠

The situation is rather different according to whether m is even or odd. Let us
assume that m is even, that is, n ≡ 0 (mod 4). Then by construction the pairings
β and β vanish on

∧+ W ×∧−W and on
∧−W ×∧+ W, and give non-degenerate

pairings ∧+
W ×

∧+
W −→ C and

∧−
W ×

∧−
W −→ C;

these pairings are either symmetric or alternating according to whether m ≡ 0 or
m ≡ 2 (mod 4) (Proposition 8.16).

Since by construction Spinn is contained in the group of units of C+(Cn, q) =
End(

∧+ W)× End(
∧−W), which is GL(

∧+ W)×GL(
∧−W), from this and from

Proposition 9.18 we get the following.

Proposition 9.22. When n ≡ 0 (mod 8) the two half-spin representations of Spinn
yield an embedding

Spinn ⊆ SO2m−1(C)× SO2m−1(C);

while if n ≡ 4 (mod 8) they give an embedding

Spinn ⊆ Sp2m−2(C)× Sp2m−2(C).

In the case n = 4 we have Sp1(C) = SL2(C), and we recover the isomorphism
Spin4(C) ' SL2(C)× SL2(C) of Corollary 9.19.

In the next case, n = 8, Spin8 is embedded into SO8 × SO8; the dimension of
Spin8 is 28 while that of SO8 × SO8 is 56, so we don’t get an isomorphism. How-
ever, something remarkable happens: the standard representation and the two
half-spin representations of Spin8 are all orthogonal representations of dimen-
sion 8. These three representations are related via triality, which will be treated
later.

When m is odd, we see from Proposition 8.16 that one between β and β is sym-
metric, while the other is alternating. The fact that the spin representation pre-
serves both a symmetric and an alternating form may seem striking, but it is in
fact rather mundane. We see from the definitions that wen m is odd β and β both
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vanish on
∧+ W × ∧+ W and

∧−W × ∧−W. Both β and β give non-degenerate
pairings ∧+

W ×
∧−

W −→ C and
∧−

W ×
∧+

W −→ C;

β and β agree on
∧+ W × ∧−W, while the differ by the sign on

∧−W × ∧+ W.
Furthermore, the second paring is simply the transpose of the first, up to sign.
Hence the only essential piece of information that comes from β and β is a non-de-
generate paring

∧+ W ×∧−W → C, that is invariant under the action of Spinn.

Proposition 9.23. Assume that n ≡ 2 (mod 4), and write n = 2m. Then the two half
spin representations are dual to each other and faithful.

Furthermore, if n ≥ 6 each half spin representation gives an embedding

Spinn ⊆ SL2m−1(C).

Proof. The fact that the two half-spin representations are dual follows from the
existence of the invariant pairing

∧+ W ×∧−W → C constructed above.
Since Spinn is contained in GL(

∧+ W) × GL(
∧−W), and since the kernel of

the two half-spin representations Spinn → GL(
∧+ W) and Spinn → GL(

∧−W)
are the same, since the two representations are dual, we see that the half-spin
representations are both faithful.

The last statement follows from this and from Proposition 9.18. ♠

Corollary 9.24. As an algebraic group, Spin6(C) is isomorphic to SL4(C).

Proof. We have seen that there is an embedding of algebraic groups Spin6(C) ⊆
SL4(C). Both groups are 15-dimensional and SL4(C) is connected, so the result
follows. ♠

The canonical pairings: the odd case. Now we assume that n is odd, n = 2m + 1.
The situation is different from the even case: in each dimension, only one of the
two form β and β is invariant under the action of Spinn.

Theorem 9.25. If n ≡ 1 (mod 4), then the bilinear form β on
∧•W is invariant under

the action of Spinn.
If n ≡ 3 (mod 4), then the bilinear form β on

∧•W is invariant under the action of
Spinn.

Proof. We have an analogue of Lemma 9.21.

Lemma 9.26. 3 Suppose that v ∈ V, x, y ∈ ∧•1 W. If m is even, then

β(vx, y) = β(x, vy) and β(vx, vy) = − |v|2 β(x, y);

while

β(vx, y) = −β(x, vy) and β(vx, vy) = |v|2 β(x, y)

if m is odd.

♠

Proof. The formulas for β(vx, vy) and β(vx, vy) follow from the preceding ones, as
in the proof of Lemma 9.21.
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To prove the formulas for β(vx, y) and β(vx, y), from Lemma 9.21 we know that
they are correct when v is in W ⊕W ′; since every vector in V is the sum of a vector
in W ⊕W ′ and a multiple of u0, we may assume that v = u0.

We may assume that x and y are homogeneous; and then β(u0x, y) and β(u0x, y)
are 0, unless |x| + |y| = m, in which case (−1)|x| = (−1)m(−1)|y|. From this
we get β(u0x, y) = (−1)mβ(x, u0y) and β(u0x, y) = (−1)mβ(x, u0y), and we are
done. ♠

Putting this together with Proposition 8.16 we get the following.

Proposition 9.27. If n ≡ 1 or n ≡ 7 (mod 4) the spin representation gives an embed-
ding

Spinn ⊆ SO2m ;

while if n ≡ 3 or n ≡ 5 (mod 5) it gives an embedding

Spinn ⊆ Sp2m−1 .

Corollary 9.28. As an algebraic group, Spin5(C) is isomorphic to Sp2(C).

The exceptional isomorphisms. Let us collect the result about the structure of
Spinn(C) for n ≤ 6 that have proved in Examples 9.5 and 9.6, and in Corollaries
9.19, 9.24 and 9.28.

Theorem 9.29. We have the following isomorphisms of algebraic groups:

Spin1(C) ' Z/2Z,

Spin2(C) ' C∗

Spin3(C) ' SL2(C),

Spin4(C) ' SL2(C)× SL2(C),

Spin5(C) ' Sp2(C),

Spin6(C) ' SL4(C).

Remark 9.30. The structure theory of algebraic groups shows that no isomorphism
of this kind can exist for n ≥ 7, because then the Dynkin diagram of Spinn does not
coincide with the Dynkin diagram of any other simply connected algebraic group.

10. TRIALITY

From now on the base field will be C; we will write Spinn and SOn for Spinn(C)
and SOn(C). We will also denote the two half-spin modules

∧+ W and
∧−W by

S+ and S− respectively.
The group Spin8 has three 8-dimensional orthogonal representations: the rep-

resentation ρ : Spin8 → SO8, and the two half-spin representations, denoted by
σ+ : Spin8 → GL(S+) and σ− : Spin8 → GL(S−) (we think of the two half-spin
spaces as endowed with the non-degenerate quadratic form β, which is invariant
under Spin8, according to Theorem 9.20).

Hence we get three representations ρ, σ+ and σ− : Spin8 → SO8. These are not
isomorphic: this can be checked, for example, by looking at the action of the center
{±1,±η} of Spin8, where η = e1 . . . e8 (Theorem 9.14). In fact −1 ∈ Spin8 is sent
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to the identity by ρ, while it acts as multiplication by −1 on S+ and S−. So neither
σ+ nor σ− is isomorphic to ρ.

To see that σ+ and σ− are not isomorphic, we need to see how η acts on S+

and S−. Notice that, since σ+ and σ− are irreducible representations of Spin8, by
Proposition 9.16, η must act as a scalar, by Schur’s Lemma. We have

ei = −
√
−1(wi + w′i)

for 1 ≤ i ≤ 4 and
ei = wi−4 − w′i−4

for 5 ≤ i ≤ 8; hence

η = (w1 + w′1)(w2 + w′2)(w3 + w′3)(w4 + w′4)(w1−w′1)(w2−w′2)(w3−w′3)(w4−w′4).

An elementary calculation, using the definition of the action of Spin8 on the space
of spinor, tells us that η1 = 1, while ηw4 = −w4; hence η acts like the identity on
S+ and as multiplication by −1 on S−. So σ+ and σ− are not isomorphic.

What is the relation among these three representations? One way to state it is
the following.

Theorem 10.1. There exists an action of the symmetric group S3 on the algebraic group
Spin8 acting as the full symmetric group on the set consisting of the isomorphism classes
of these three representations.

The simple-minded construction that comes to mind is the following. If we
choose isomorphisms of quadratic forms (C8, q) ' (S+, β) ' (S−, β) we obtain
an embedding Spin8 ⊆ SO8 × SO8 × SO8; there is an obvious action of S3 on
SO8 × SO8 × SO8 by permuting the components, and one might expect that by
chosing the isomorphisms in the right way one can have Spin8 to be invariant in
the product.

This can not work. In fact, since the first projection Spin8 → SO8 is a topological
cover, there is no non-trivial automorphism of Spin8 over the identity in SO8. The
action of S3 on Spin8 does come from an action of S3 on SO8 × SO8 × SO8, but it
is not the obvious one. It is constructed by means of an amazing piece of linear
algebra, known as triality. Triality is like duality, only it involves three vector
spaces instead on two; duality between two vector spaces is defined by a bilinear
form, triality is defined by a trilinear form.

Let (V1, q1) and (V2, q2) be two non-degenerate quadratic forms; these give iso-
morphisms Vi ' V∨i , defined by sending v ∈ Vi into the linear form qi(v,−). Re-
call that there is a canonical isomorphism Hom(V1, V2) ' Hom(V2, V1), in which
any linear map f : V1 → V2 corresponds to its transpose f t : V2 → V1, defined by
the equality

q2
(

f (v1), v2
)

= q1
(
v1, f t(v2)

)
for any v1 ∈ V1 and v2 ∈ V2. Furthermore Hom(V1, V2) and Hom(V2, V1) are
also isomorphism to the space of bilinear forms V1 × V2 → C; a bilinear form
Φ : V1 × V2 → C corresponds to the linear maps f1 : V1 → V2 and f2 : V2 → V1
defined by

Φ(v1, v2) = q2
(

f1(v1), v2
)

= q1
(
v1, f2(v2)

)
.

for any v1 ∈ V1 and v2 ∈ V2. Clearly f1 and f2 are the transpose of each other.
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The following is very easy.

Proposition 10.2. Let Φ : V1 × V2 → C be a bilinear map, corresponding to the linear
maps f1 : V1 → V2 and f2 : V2 → V1. Then the following are equivalent.
(a) f1 and f2 are isometric maps.
(b) Either f1 or f2 is an isometric map, and dim V1 = dim V2.

Such a bilinear map Φ defines a duality between the two quadratic forms.
Now consider three non-degenerate quadratic forms (V1, q1), (V2, q2) and (V3, q3).

A bilinear map f : V1 ×V2 → V3 is called orthogonal when the equality

q3
(

f (v1, v2)
)

= q1(v1)q2(v2)

holds for any v1 ∈ V1 and v2 ∈ V2.
A trilinear form Φ : V1 × V2 × V3 → C gives a bilinear map V1 × V2 → V3,

denoted by (v1, v2) 7→ v1v2, defined by the formula

q3
(
v1v2, v3

)
= Φ(v1, v2, v3).

This gives an isomorphism of the space of trilinear forms V1 × V2 × V3 → C with
the space of bilinear maps V1×V2 → V3. But of course the same holds for any two
distinct indices i and j between 1 and 3: if {1, 2, 3} = {i, j, k}, the trilinear form Φ
yields bilinear maps Vi ×Vj → Vk, denoted by (vi, vj) 7→ vivj.

This notation by juxtaposition should not give rise to confusion: in no case
we will have more than one trilinear map around simultaneosly. It is of course
ambiguous: for example, when V1 = V2 = V3 = V, there are three possibly
different bilinear maps V × V → V denoted with the same notation. In this case
one should probably make the Vi disjoint, for example by setting Vi = V × {i}. In
our main example the Vi will be distinct.

It is also easy to see how the various maps Vi × Vj → Vk determine one other.
For example, if vi ∈ Vi for i = 1, 2 and 3, we have

q3(v1v2, v3) = Φ(v1, v2, v3)

= q2(v2, v1v3);

this can be read as saying that the linear functions V2 → V3, v2 7→ v1v2 and V3 →
V2, v3 7→ v1v3, are the transpose of each other.

Furthermore, the bilinear functions Vi × Vj → Vk have an obvious symmetry
property: if vi ∈ Vi and vj ∈ Vj, we have

vivj = vjvi ∈ Vk.

These facts will be used without comments in what follows.

Proposition 10.3. Let Φ : V1 ×V2 ×V3 → C be a trilinear form, and assume that none
of the Vi is 0. Then the following two conditions are equivalent.
(a) Each of the Vi ×Vj → Vk is orthogonal.
(b) One of the Vi ×Vj → Vk is orthogonal, and dim V1 = dim V2 = dim V3.

Proof. Assume that V1 ×V2 → V3 is orthogonal. Since V1 6= 0, we can choose v1 ∈
V1 such that q1(v1) = 1. Then it follows from the definition of an orthogonal bilin-
ear map that the map V2 → V3 defined by v2 7→ v1v2 is isometric, hence injective.
So dim V2 ≤ dim V3, and, symmetrically, dim V3 ≤ dim V2; thus dim V2 = dim V3.
If V1 ×V3 → V2 is also orthogonal we see that dim V1 = dim V2 = dim V3.
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Conversely, assume that, for example, V1 × V2 → V3 is orthogonal, and the
dimensions are equal; let us show that, for example, V1 × V3 → V2 is orthogonal.
We need to prove the formula q2(v1v3) = q1(v1)q3(v3) for any v1 ∈ V1 and v3 ∈ V3.
By continuity, it is enough to prove it assuming that q1(v1) 6= 0.

The two maps f : V2 → V3 and g : V3 → V2 defined by f (v2)
def= v1v2 and g(v3) =

v1v3 are the transpose of each other. We have that q3
(

f (v2)
)

= q1(v1)q2(v2) for
any v2 ∈ V2; this implies that

q3
(

g f (v2), v′2
)

= q3
(

f (v2), f (v′2)
)

= q1(v1)q2(v2, v′2)

for any v2 and v′2 in V2; hence g f = q1(v1)idV2 . Since V2 and V3 have the same
dimension and q1(v1) 6= 0, this implies that f g = q1(v1)idV2 , so that

q2(v1v3) = q2
(

g(v3), g(v3))
)

= q3
(

f g(v3), v3
)

= q1(v1)q3(v3). ♠

Remark 10.4. It follows from the proof that if any two of the Vi × Vj → Vk are
orthogonal, then the dimensions of all the Vi are equal, so they are all orthogonal.

Definition 10.5. A triality is a sequence of three non-degenerate quadratic forms
(V1, q1), (V2, q2) and (V3, q3), with V1, V2 and V3 positive-dimensional, and a tri-
linear form Φ : V1 ×V2 ×V3 → C satisfying the equivalent conditions of Proposi-
tion 10.3.

The dimension of such a triality is the common dimension of the Vi.

We will usually denote such a triality by (V1, V2, V3, Φ), omitting the qi from the
notation.

By Proposition 10.3, to produce a triality is it enough to have three non-degen-
erate quadratic forms (V1, q1), (V2, q2) and (V3, q3) of the same positive dimension,
and an orthogonal bilinear map V1 ×V2 → V3.

While dualities are extremely common, trialities are exceedingly rare. Let us
start with some elementary example, which do not require the theory of Clifford
algebras.

Examples 10.6. In all these examples we will have V1 = V2 = V3 = V and q1 =
q2 = q3 = q.

(a) Here V is C, the quadratic form is the standard one q(x) = x2, and the orthog-
onal map C×C→ C is the product (x, y) 7→ xy.

(b) Now V = C2, the quadratic form is the hyperbolic form q(x) = x1x2, and
orthogonal map C2 ×C2 → C2 is given by

(
(x1, x2), (y1, y2)

)
7→ (x1y1, x2, y2).

(c) V is the space M2(C) of 2× 2 matrices, the quadratic form is the determinant,
and the orthogonal map M2(C)×M2(C)→ M2(C) is the matrix product.

The next one is our basic example of triality; it is much more subtle than the
preceding ones.

Example 10.7. We take V1 = C8, V2 = S+, V3 = S−. The quadratic forms are
q(x) = − |x|2 for C8, and the restrictions of β for S+ and S−. The bilinear function
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C8 × S+ → S− is given by the C(C8, q)-module structure on
∧•W = S+ ⊕ S−.

Explicitly, the formula is that in the statement of Theorem 8.2.
We will denote by Φ : C8 × S+ × S− → C the resulting trilinear function.
The fact that this is triality follows from the equality β(vx, vx) = q(x)β(x, x)

for v ∈ C8 and x ∈ S+ (Lemma 9.21). Also from Lemma 9.21 we know that
β(vx, y) = β(x, vy) when v ∈ C8, x ∈ X+ and y ∈ S−, which says that, given
v ∈ C8, the traspose of S+ → S−, x 7→ vx, is S− → S+, y 7→ vy. In other words,
the bilinear function C8 × S− → S+ determined by Φ is once again given by the
spin module structure on

∧•W.

It is a remarkable fact that we have constructed essentially all the examples of
triality that exist. Here is a weaker version of this fact.

Theorem 10.8 (Hurwitz). A triality can only have dimension 1, 2, 4 or 8.

Proof. We start with a Lemma.

Lemma 10.9. Let (V1, V2, V3, Φ) be a triality. If (i, j, k) = (1, 2, 3), vi and v′i are in Vi,
vj is in Vj, we have

vi(v′ivj) + v′i(vivj) = 2qi(vi, v′i)vj.
and

vi(vivj) = qi(vi)vj.

Proof. The two formulas are equivalent. The second one follows from the first
by taking vi = v′i; the first one follows from the second by polarization. So it is
enough to prove the second one: and the argument is given in the course of the
proof of Proposition 10.3. ♠

There is a linear function V1 → EndC(V2 ⊕ V3) obtained by sending v1 into
(v2, v3) 7→ (v1v3, v1v2). Consider the Clifford algebra C(V1, q1), which is isomor-
phic to C(Cn, q): the equality v1(v1vj) = q1(v1)vj (from Lemma 10.9) implies
that this linear function extends to a homomorphism of C-algebras C(V1, q1) →
EndC(V2 ⊕V3); thus V2 ⊕V3 is a C(V1, q1)-module.

Since the elements of V1 switch the two factors V2 and V3, these factors will
be invariant under the even part C+(V1, q1); hence V2 and V3 are modules over
C+(V1, q1); because of the structure of C+(V1, q1) (Theorems 8.7 and Theorem 8.14),
and of the structure of modules over products of matrix algebras (Proposition A.9)
we see that V2 is a direct sum of copies of

∧•W (in the odd case) or of
∧+ W and∧−W (in the even case).

If we call n the common dimension of the Vi, and we set n = 2m (if n is even) or
n = 2n + 1 (in n is odd), we see that n is a multiple of 2m−1 (when n is even) or of
2n (when n is odd). It is an elementary exercise to prove that this implies n = 1, 2,
4 or 8. ♠

Definition 10.10. Let τ = (V1, V2, V3, Φ) be a triality. A restricted automorphism of
τ is triple ( f1, f2, f3), in which each fi is an orthogonal automorphism of Vi, such
that

Φ
(

f1(v1), f2(v2), f3(v3)
)

= Φ(v1, v2, v3)
for any v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3.

The set of such restricted automorphisms, with the group structure given by
component-wise composition, is called the restricted automorphism group of τ, and
denoted by Aut0(τ).
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Thus, Aut0(τ) is a subgroup of O(V1, q1)×O(V2, q2)×O(V3, q3).

Proposition 10.11. Let τ = (V1, V2, V3, Φ) be a triality, ( f1, f2, f3) a triple in which
each fi is an orthogonal automorphism of Vi. This is a restricted automorphism if and only
if f1(v1) f2(v2) = f3(v1v2) for any v1 ∈ V1 and v2 ∈ V2.

Proof. We have

Φ
(

f1(v1), f2(v2), f3(v3)
)

= q3
(

f1(v1) f2(v2), f3(v3
)

and

Φ(v1, v2, v3) = q3(v1v2, v3)

= q3
(

f3(v1v2), f3(v3)
)

for any v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3. On the other hand q3
(

f1(v1) f2(v2), f3(v3)
)

=
q3
(

f3(v1v2), f3(v3)
)

for all v3 in V3 if and only if f1(v1) f2(v2) = f3(v1v2), and this
proves the statement. ♠

We leave it to the reader as an exercise to identify the restricted automorphism
groups for each of the elementary examples of 10.6.

Proposition 10.12. The image of the natural embedding

Spin8 ⊆ SO8 × SO(S+, β)× SO(S−, β)

given by (ρ, σ+, σ−) is Aut0(C8, S+, S−, Φ).

Proof. For each a ∈ Spin8, the map ρ(a) ∈ SO8 is defined as ρ(a)v = ava−1, with
the product being the Clifford product; while σ+(a)x and σ−(a)y are respectively
ax and ay, the product being given by the structure of C+(C8, q)-module on S+

and S−. Hence (
ρ(a)v

)(
σ+(a)x

)
= ava−1ax

= a(vx)

= σ−(a)(vx);

this shows that
(
ρ(a), σ+(a), σ−(a)

)
is a restricted automorphism of (C8, S+, S−, Φ).

This gives an embedding of Spin8 into Aut0(C8, S+, S−, Φ).
Let us prove that this inclusion is an equality. First of all, let us check that

Aut0(C8, S+, S−, Φ), which is a priori a subgroup of O8 ×O(S+, β)×O(S−, β), is
in fact contained inside SO8 ×O(S+, β)×O(S−, β).

The point is the following. The element f ∈ O8 induces an automorphism
of C(C8, q), as in the discussion preceding the statement of Proposition 8.9. The
direct sum S+ ⊕ S− =

∧•W is a module over C(C8, q)-module; the equalities
f1(v1) f2(v2) = f3(v3) and f1(v1) f3(v3) = f2(v2) tell us that f2 ⊕ f3 : V2 ⊕ V3 →
V2 ⊕V3 induce an isomorphism

∧•W '
(∧•W

) f1 of C(C8, q)-modules. Hence f2

and f3 give isomorphisms of C+(C8, q)-modules S+ ' (S+) f1 and S− ' (S−) f1 ;
and Proposition 8.9 implies that f1 ∈ SO8, as claimed.

The kernel of ρ : Spin8 → SO8 is {±1}; hence to show that the embedding is an
equality it suffices to prove that the kernel of the homomorphism

Aut0(C8, S+, S−, Φ) −→ SO8
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that sends ( f1, f2, f3) into f1 has order 2. Let (idC8 , f , g) be an element of this
kernel. Then we have g(vx) = v f (x) for any v ∈ C8 and x ∈ S+; and this implies
that f ⊕ g : S+ ⊕ S− → S+ ⊕ S− is a homomorphism of C(C8, q)-modules. Since
S+ ⊕ S− =

∧•W is a simple C(C8, q)-module, ( f , g) must be a scalar; that is, both
f and g are scalars, and they are equal. Since they are orthogonal they must be±1;
this concludes the proof. ♠

There is a more general notion of automorphism of a triality, in which the factors
are allowed to be permuted.

Definition 10.13. Let τ = (V1, V2, V3, Φ) be a triality. An automorphism of τ is a
quadruple ( f1, f2, f3, s), where s ∈ S3, and fi : Vi → Vs(i) is an isometry, such that

Φ
(

fs−1(1)(vs−1(1)), fs−1(2)(vs−1(2)), fs−1(3)(vs−1(3))
)

= Φ(v1, v2, v3)

for any v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3.
The composition of automorphisms is defined by the formula

( f1, f2, f3, s) ◦ (g1, g2, g3, t) = ( ft(1) ◦ g1, ft(2) ◦ g2, ft(3) ◦ g3, st).

If f def= ( f1, f2, f3, s) is an automorphism, this extends to a linear automorphisms
of V1 ⊕V2 ⊕V3 by the formula

f (v1, v2, v3) =
(

fs−1(1)(vs−1(1)), fs−1(2)(vs−1(2)), fs−1(3)(vs−1(3))
)
.

Conversely, this automorphism f determines ( f1, f2, f3, s); we will denote an au-
tomorphism of τ by specifying f .

We leave it to the reader to check that with the product thus defined, the au-
tomorphisms of τ form a group, called the automorphism group of τ, denoted by
Aut(τ). If ( f1, f2, f3, s), the fi define an orthogonal map of V1 ⊕ V2 ⊕ V3 into it-
self, by the formula above; this gives an injective automorphism of Aut(τ) into
the orthogonal group O(V1 ⊕V2 ⊕V3).

There is a natural homomorphism Aut(τ)→ S3, sending ( f1, f2, f3, s) into s; its
kernel is canonically isomorphic to the restricted automorphism group Aut0(τ).

Here is the main result of our treatment.

Theorem 10.14. The homomorphism Aut(τ)→ S3 is a split surjection.

That is, there is a group homomorphism S3 → Aut(τ) whose composite with
Aut(τ) → S3 is the identity. Once such a splitting is chosen, it induces a right
action of S3 by conjugation on the normal subgroup Aut0(τ) ⊆ Aut(τ). The group
Aut0(τ) is a subgroup of O(V1, q1)×O(V2, q2)×O(V3, q3); hence V1, V2 and V3 are
representations of Aut0(τ).

If f ∈ Aut(τ) and W is a representation of Aut0(τ), we denote by W f the
representation of Aut0(τ) on the same space W given by the formula (h, w) 7→
( f−1h f )w. I claim that if f ∈ Aut(τ) maps to s ∈ S3, then for each i = 1, 2 or 3, the
map fi : Vi → Vs(i) gives an isomorphism of representations of V f

i with Vs(i). Let
h = (h1, h2, h3) ∈ Aut0(τ); then we have

h
(

fiv
)

= hs(i) fi(v)

= fi
(
( f−1

i hs(i) fi)v
)

= fi
(
( f−1h f )v

)
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for any v ∈ Vi. Applying this to Spin8 = Aut0(C8, S+, S−) we obtain that the
right action of R3 acts as the symmetric group on the isomorphism classes of the
representations C8, S+ and S−, as claimed.

Proof. To obtain the isomorphism, choose two vectors u1 ∈ V1 and u2 ∈ V2 with
q1(v1) = q2(v2) = 1. Set u3

def= u1u2 ∈ V3; we have q3(v3) = q1(v1)q2(v2) = 1.
Notice that we have

u1u3 = u1(u1u2)

= q1(u1)u2

= u2

by Lemma 10.9. Analogously, if {i, j, k} = {1, 2, 3} we have uiuj = uk. Thus we
can start from any two ui and uj with qi(vi) = qj(vj) = 1, and obtain the third as
uk = uiuj.

For each i, we obtain isometries ui− : Vj → Vk and ui− : Vk → Vj, defined by
v 7→ uiv; again because of Lemma 10.9, these are the inverse of each other. We
start with three lemmas.

We need to compare the composition

Vi
uk− // Vj

ui− // Vk

with
uj− : Vi −→ Vk.

Denote by Rui : Vi → Vi the reflexion along the hyperplane orthogonal to ui, de-
fined by the equality

Rui vi = vi − 2qi(ui, vi)ui.

Lemma 10.15. For each vi ∈ Vi we have

ui(ukvi) = uj
(
−Rui vi

)
.

Proof. By Lemma 10.9 we have

ui(ukvi) = −vi(uiuk) + 2qi(ui, vi)uk

= −ujvi + 2qi(ui, vi)uk

= uj
(
−vi + 2qi(ui, vi)ui

)
= uj

(
−Rui vi

)
. ♠

Lemma 10.16. If {i, j, k} = {1, 2, 3}, vj ∈ Vj and vk ∈ Vk, then

(uivk)(uivj) = −Rui (vjvk) ∈ Vi.

Proof. Assume, for example, that (i, j, k) = (1, 2, 3). By Lemma 10.9, we have

(u1v3)(u1v2) = −v2
(
(u1v3)u1

)
+ 2q2(u1v3, v2)u1

= −v2v3 + 2Φ(u1, v2, v3)u1

= −v2v3 + 2q1(u1, v2v3)u1

= −Ru1(v2v3). ♠
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Lemma 10.17. If {i, j, k} = {1, 2, 3} and vj ∈ Vj, we have

ui(Ruj vj) = Ruk (uivj) ∈ Vk.

Proof. This is true because ui− : Vj → Vk is an orthogonal map and carries uj into
uk. ♠

We will produce a copy of S3 inside Aut(τ) by lifting the three transpositions
(2 3), (3 1) and (1 2). For each i = 1, 2 or 3, consider the automorphism σi of
V1 ⊕ V2 ⊕ V3 that exchanges Vj and Vk by mutiplying by ui, while it acts on Vi as
−Rui . Thus, for example, we have

σ1(v1, v2, v3) =
(
−Ru1 v1, u1v3, u1v2

)
.

I claim that σi is in Aut(τ). Consider for example the case of σ1: we need to prove
the identity

Φ
(
−Ru1 v1, u1v3, u1v2

)
= Φ(v1, v2, v3)

for any v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3. By Lemma 10.16, we have

Φ
(
−Ru1 v1, u1v3, u1v2

)
= q1

(
−Ru1 v1, (u1v3)(u1v2)

)
= q1

(
−Ru1 v1,−Ru1(v2v3)

)
= q1(v1, v2v3)

= Φ(v1, v2, v3)

as claimed.
Each σi maps to the transposition (j k) in S3; therefore the subgroup generated

by the σi surjects onto S3. We need to show that it is in fact isomorphic to S3. For
this, it is enough to show that the σi satisfy the following relations:
(a) σ2

1 = σ2
2 = 1 and

(b) σ1σ2σ1 = σ3 = σ2σ1σ2;
for it is well known, and easy to show, that the group generates by three generators
σ1, σ2 and σ3 satisfying the relations above is in fact S3.

It is immediate to prove that σ2
i = 1. Let us compute σ2σ1. We have

σ2σ1(v1, v2, v3) = σ2(−Ru1 v1, u1v3, u1v2)

=
(
u2(u1v2),−Ru2(u1v3),−u2(Ru1 v1)

)
=
(
−u3(Ru2 v2),−Ru2(u1v3),−u2(Ru1 v1)

)
=
(
−u3(Ru2 v2),−u1(Ru3 v3),−u2(Ru1 v1)

)
because of Lemmas 10.15 and 10.17. Hence

σ1σ2σ1(v1, v2, v3) = σ1
(
−u3(Ru2 v2),−u1(Ru3 v3),−u2(Ru1 v1)

)
=
(
Ru1(u3(Ru2 v2)),−u1(u2(Ru1 v1)),−u1(u1(Ru3 v3))

)
=
(
u3(R2

u2
v2), u3(R2

u1
v1),−Ru3 v3)

)
=
(
u3v2, u3v1,−Ru3 v3)

)
= σ3(v1, v2, v3).

The proof that σ2σ1σ2 = σ3 is obtained by exchanging the indices 1 and 2 in the
formulas above.

♠
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APPENDIX A. WEDDERBURN THEORY

We fix a field K; all algebras will be finite algebras over K, and all modules
will be finitely generated (or, equivalently, will be finite-dimensional vector spaces
over K).

Let A be a K-algebra, M an A-module. We will write A M or MA to indicated
whether M is a left of right A-module. If we write simply “a module”, this module
will be indifferently left or right.

We will also follow the following convention, which, for very good reasons,
is standard in non-commutative algebra: if M is a right A-module, EndA(MA)
will be the ring of endomorphism of M, written as usual on the left, and com-
posed according to the usual rule. Then M will be a both a right A-module
and a left EndA(MA)-module, and the two structures as linked as follows: if
f ∈ EndA(MA), x ∈ M and a ∈ A, then f (xa) = ( f x)a (one says that M is an(
EndA(MA)− A

)
-bimodule). But if M is a left A-module, then we write the endo-

morphisms on the right, and the composition is defined by the opposite rule: f g is
composed by first applying f then g, so that x( f g) = (x f )g for any x ∈ M. Then
M is a left A-module and a right EndA(A M)-module, and we have (ax) f = a(x f )
for any a ∈ A, x ∈ M and f ∈ EndA(A M) (M is an (A−

(
EndA(MA)

)
-bimodule)).

A division algebra is non-zero K-algebra in which every non-zero element is in-
vertible. If D is a division algebra, then D contains K in its center.

Proposition A.1. Suppose that K is algebraically closed. Then K is the only finite division
algebra over K, up so isomorphism.

Proof. If x ∈ D, then the subring K[x] ⊆ D is a finite field extensions of K. It
follows that D = K.

An alternate argument is as follows: for each u ∈ D, consider the K-linear
operator D → D defined by x 7→ ux. Since K is algebraically closed and D is a
vector space of finite positive dimension, this operator has an eigenvalue a ∈ K.
Hence multiplication by u− a on D is not injective; but then u− a = 0, and u ∈ K.

♠

A right A-module MA is free if it has a basis, a sequence of elements e1, . . . , en
such that every element x ∈ M can be written uniquely in the form

x = e1a1 + · · ·+ enan

with a1, . . . , an in A. Equivalently, MA is free if it isomorphic to the free right
A-module An

A. We will write vectors in An
A as column vectors: then then endo-

morphism ring EndA(An
A) is the matrix algebra Mn(A), with the action given ma-

trix multiplication of a square matrix by a column vector, in the usual fashion (the
usual argument for fields will work; or see Lemma A.13).

Notice that the dimension of An as a vector space over K is n dimK A: hence if
A 6= 0 the cardinality of a basis of a free module is uniquely determined.

Proposition A.2. A module over a division algebra is free.

One takes one of the standard proofs of this fact for fields and check that it
works for division rings.

Definition A.3. Let A be a K-algebra. A module M over A is simple (or irreducible)
if it not 0, and has no non-zero proper submodule.
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Clearly, M is simple if and only if it it not zero, and is generated by any of its
non-zero elements.

Proposition A.4 (Schur’s lemma). Let V be a simple A-module.
(a) A morphism of left A-modules f : V → M is either 0 or injective. If M is also simple,

then f is either 0 or an isomorphism.
(b) The endomorphism algebra EndA(V) is a division algebra.
(c) If K is algebraically closed, then EndA(V) = K.

Proof. The kernel of f is a submodule of M and the image of f is a submodule of
N: this proves part (a). Part (b) follows from part (a), and part (c) follows from
part (b) and Proposition A.1. ♠

Corollary A.5. The endomorphims algebra EndA(A M) of a simple A-module is a divi-
sion algebra.

Proposition A.6. Let M be a module over A. The following conditions are equivalent.
(a) M is a sum of simple submodules.
(b) M is a direct sum of simple submodules.
(c) Every submodule of M has a complement, that is, if N is a submodule of M, there

exists another submodule N′ ⊆ N such that M = N ⊕ N′.

Definition A.7. If the equivalent conditions of Proposition A.6 are satisfied, we
say that M is semisimple.

Proof. Clearly (b) implies (a).
Let us prove that (a) implies (c). Let M be a sum of simple modules, and let N be

a submodule of M. Choose a submodule N′ which has maximal dimension among
those with N ∩ N′ = 0; then the sum N + N′ is direct. I claim that N + N′ = M.
If not, there would exist a simple module V of M that is not contained in N + N′.
The intersection V ∩ (N + N′) is a proper submodule of V, so it is 0. This implies
that N ∩ (N′ + V) = 0, which is absurd, because N′ + V contains V properly.

We conclude by showing that (c) implies (b). Let N be a submodule of M that
has maximal dimension among all those that direct sums of simple submodules,
say N = V1 ⊕ · · · ⊕ Vk: I claim that N = M. If not, let Vk+1 be a submodule of
N′ that has minimal dimension among all the non-zero submodules of N′; clearly
Vk+1 is simple. We have N ∩ Vk+1 = 0, which implies that the sum N + Vk+1,
which contains N properly, is a direct sum V1 ⊕ · · · ⊕ Vk ⊕ Vk+1. This is absurd,
because N was supposed to be maximal. ♠

Corollary A.8. If M is a semisimple A-module, every quotient and every submodule of
M is semisimple. Furthermore, every simple module that is contained in a quotient or a
submodule of M is also contained in M.

Proof. Let ρ : M→ N be a quotient of M, and write M as a sum of simple submod-
ules Vi. The image ρ(Vi) is either 0 or isomorphic to Vi, by Proposition A.4 (a), and
N the sum of the ρ(Vi). This implies that it semisimple.

On the other hand Proposition A.6 (c) implies that every submodule of M is
isomorphic to a quotient of M. ♠

Let D1, . . . , Dr be division algebras over K, n1, . . . , nr be positive integers; we
will characterize left A-modules over the algebra

A = Mn1(D1)× · · · ×Mnr (Dr)
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(similar arguments would work for right modules).
For each i, set Vi = Dni

i ; let A act on Vi on the left through the ith projection.
It is easy to see that any non-zero element of Vi can be completed to a basis of Vi,
and that, as a consequence, given any two elements v and w of Vi with v 6= 0 there
exists a matrix α ∈ Mni (Di) such that αv = w (this can be proved as for fields).
This implies that Vi is generated by all non-zero elements, hence it is simple. It is
easy to verify that the ring EndA(Vi) coincides with Di.

Clearly Vi is not isomorphic to Vj for i 6= j, for example because the annihilators
are different.

Proposition A.9. As a left A-module, A is isomorphic to Vn1
1 ⊕ · · · ⊕Vnr

r .

Proof. Each ring Mni (Di) is isomorphic to Vni
i , the isomorphism being given by

writing a matrix as the sequence of its ni column vectors. If e1, . . . , eni is the canon-
ical basis of Di as a right Di-module, this isomorphism is obtained by sending α
into (αe1, . . . , αeni ). From these we obtain the desidered isomorphism of left A-
modules

A ' Vn1
1 ⊕ · · · ⊕Vnr

r .

♠

Theorem A.10. Every module over A is isomorphic to a unique module of the form Vd1
1 ⊕

· · · ⊕Vdr
r , for a uniquely determined sequence of non-negative integers d1, . . . , dr.

In particular, the Vi are the only simple modules over A.

Proof. Every left module over A, which is finitely generated by hypothesis, is a
quotient of Am for some non-negative integer m: hence by Corollary A.8 every
module is a sum of copies of the Vi.

Uniqueness is easily seen from the fact that HomA(Vi, Vj) = 0 for i 6= j, because
of Proposition A.4 (a), so

HomA(Vi, Vd1
1 ⊕ · · · ⊕Vdr

r ) = HomA(Vi, Vi)di . ♠

Definition A.11. A K-algebra is semisimple if it it semisimple as a left A-module.

So finite products of matrix algebras over division algebras are semisimple.
These are in fact the only examples.

Let A be a semisimple algebra: let V1, . . . , Vr be pairwise non-isomorphic simple
left modules over A, such that, as a left A-module, A A is isomorphic to Vn1

1 ⊕ · · · ⊕
Vnr

r . For each i set Di = EndA(Vi); by Proposition A.4 (b), Di is a division algebra.

Theorem A.12 (Wedderburn). As an algebra, A is isomorphic to the product Mn1(D1)×
· · · ×Mnr (Dr). Furthermore each ni coincides with the dimension of Vi as a right vector
space over Di.

Proof. Right multiplication defines an action of A on itself, that commutes with left
multiplication; thus we get a homomorphism of algebras A → EndA(A A), that is
an isomorphism. On the other hand an endomorphism of A = Vn1

1 ⊕ · · · ⊕ Vnr
r

as a left module will carry each Vni
i to itself, because HomA(Vi, Vj) = 0 for i 6= j;

hence as an algebra A is isomorphic to EndA(Vn1
1 )× · · · × EndA(Vnr

r ). We get the
isomorphism from the following Lemma.
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Lemma A.13. Let M be a module over an algebra A, n a positive integer. Then EndA(Mn)
is isomorphic as a K-algebra to Mn

(
EndA(M)

)
.

Proof. Given an endomorphism f : Mn → Mn and two indiced i and j between
1 and n, let fij : M → M be the endomorphism that sends x ∈ M into the jth

component of f (ξ), where ξ ∈ Mn is the vector that has x at the ith place and 0
everywhere else. Then ( fij) is a matrix in Mn

(
EndA(M)

)
; we leave it to the reader

to check that by sending f into ( fij) one obtains an isomorphism of rings. ♠

For the last statement, we have seen that the simple modules over A are Dn1
1 ,

. . . , Dnr
r ; by looking at annihilators we see that each Vi must be isomorphic to

Dni
i . ♠

Corollary A.14. Suppose that K is algebraically closed, and let V1, . . . , Vr be pairwise
non-isomorphic simple left A-modules. Then the induced homomorphism

A −→ EndK(V1)× · · · × EndK(Vr)

describing the action of A on the Vi is surjective.

Proof. Set R def= EndK(V1)× · · · × EndK(Vr). We may substitute A with its image
in R. Call ni the dimension of Vi over K; then we know that we have an isomor-
phism of RR with Vn1

1 ⊕ · · · ⊕ Vnr
r ; hence A A is a submodule of Vn1

1 ⊕ · · · ⊕ Vnr
r .

By Schur’s Lemma (Proposition A.4 (c)) we have that K = EndA(Vi) for each i;
by Wedderburn’s theorem A.12 we get that A is isomorphic to Mn1(K) × · · · ×
Mnr (K). By comparing dimensions we see that A = R, as required. ♠
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